Impact of the Molecular Characterization Initiative on Pediatric CNS Tumors Diana Thomas and Sarah Leary

September 10, 2024

- 1. Molecular Characterization Initiative (MCI): Strategy
- 2. MCI Progress: Genomics and Clinical Data for CNS Subjects

3. MCI Data: Clinical Impact

- 4. MCI Data: Implications for Clinical Trials
- 5. Q&A

Agenda

Today's Speakers

Diana L. Thomas, M.D., Ph.D. Neuropathologist

- Pathology Operations Director, Biopathology Center
- Nationwide Children's Hospital

Sarah E. S. Leary, M.D., M.S. Pediatric Oncologist

- Medical Director, Pediatric Brain Tumor Program
- Seattle Children's Hospital

Molecular Characterization Initiative (MCI) Strategy

NATIONAL CANCER INSTITUTE

CCDI Molecular Characterization Initiative?

cancer.gov/CCDI-molecular

Children's Oncology Group (COG) Institutions

More than 90% of 16,000 children and adolescents diagnosed with cancer each year in the United States are cared for at Children's Oncology Group member institutions.

A Partnership Between NCI and COG Project: Every Child

NATIONAL CANCER INSTITUTE

MCI Progress

Genomics and Clinical Data for CNS Subjects

MCI CNS Enrollment by Institution as of 12/31/2023

MCI CNS Enrollment (12/31/23) by Subject US Zip Code

MCI CNS Patient Demographics

- Median Age: 8.9 years (range 0-25)
- Gender: 44% female, 56% male
- Country: 90% USA, 6% Canada, 1.6% Australia, 1.6% New Zealand
- Race: 4.3 % Asian, 10.4% Black, 1.8% multiple, 0.9% Hawaiian or Pacific Islander, 0.9% Native American
- Ethnicity: 17.6% Hispanic or Latino

MCI CNS Return of Results

12

NATIONAL CANCER INSTITUTE

MCI Data

Clinical Impact

MCI CNS Diagnosis Category

	CNS Diagnosis Category	Frequency Count	Percent of Total (%)
*	Atypical teratoid/ rhabdoid tumor	60	2.8
*	CNS Germ Cell Tumors	61	2.8
	CNS Sarcoma	9	0.4
	Choroid Plexus tumors	58	2.7
	Craniopharyngioma	43	2.0
*	Ependymoma	203	9.4
	Glioneuronal and	157	7.2
*	High-Grade Glioma	301	13.9
*	Low-Grade Glioma	595	27.4
*	Medulloblastoma	412	19.0
	Other	89	4.1
	Other CNS Embryonal tumors	71	3.3
	Not Available	111	5.1
		2170	100.0

* Current COG trial for selected patients * Planned COG trial for selected patients

MCI CNS DNA Methylation Classification

 >100 Distinct CNS tumor classes identified

Methylation Classification	Frequency	Percent (%)
Match	1406	85%
Suggestive	100	6%
Not Determined	139	8%
Total Tested	1645	100%

Results: Somatic Alterations Detected in CNS Tumors

- Whole exome DNA sequencing:
 - Pathogenic variants detected in 43.2% of tumors (n=1829)
 - 111 BRAF V600
 - 28 IDH1
 - Medically-informative copy number variation (CNV) or loss of heterozygosity (LOH) in 76.3% of tumors
- Archer fusion panel: fusions detected in 28.5% of tumors (n=1683)
 - 289 BRAF::KIAA1549
 - 36 NTRK/ROS/ALK fusions

Results: 12% Germline Cancer Predisposition

- 207 of 1738 children tested found to have genetic cancer predisposition
- 49 different genes
 - CHEK2 (1.5%), TP53 (0.9%)
 - MMR defects (0.9%)
 - 12 high-grade glioma
 - 1 low-grade glioma
 - 2 medulloblastoma
 - ELP1 (0.8%), NF1 (0.7%)

MCI CNS Follow-Up

MCI Data

Implications for Clinical Trials

MCI CNS Diagnosis: Medulloblastoma

MCI CNS Medulloblastoma (n=412 as of 12/31/2024)

Medulloblastoma Group	Frequency	Percent (%)
Group 4	127	31%
Group 3	73	18%
SHH TP53 wt	74	18%
SHH TP53 mut	14	3%
WNT	60	15%
NOS	64	15%
Total	412	100%

COG Clinical Trial Approach for Medulloblastoma Integrated Clinical and Molecular Risk Stratification

- Clinical Risk Factors
 - Metastatic Disease
 - Incomplete Resection
 - Anaplastic Histology
 - Age < 4*</p>

*radiation avoidance

- Molecular High-Risk
 - Group 3
 - MYC amplification
 - Isochromosome 17
 - SHH
 - TP53 mutation or deletion
 - NMYC or GLI amplification
 - Chromosome 14 loss

- Molecular Low-Risk
 - WNT
 - Group 4
 - Chromosome 11 loss

DNA Methylation

Exome Sequencing

Exome Copy Number

MCI CNS Diagnosis: Medulloblastoma Group 3 (n=73)

- Median Age: 5 years (range 1-23)
- >2:1 Male:Female
- Stage: 39% metastatic
- One Year Follow-Up (n=22)
 - Extent of Resection: 73% GTR
 - Radiation Therapy: 64% (all proton)
 - One Year Survival: 68%

NCTN COG Clinical Trial Design

NATIONAL CANCER INSTITUTE

MCI CNS Diagnosis: Diffuse Midline Glioma, H3K27 Altered (n=86)

- Median Age: 9 years (range 3-20)
- Gender: 57% male:43% female
- Stage: 3/22 (14%) positive CSF cytology (most not tested)
- One Year Follow-Up available for first 14 patients: 43% survival
- All tumors with alterations in addition to H3K27

Potentially Targetable Pathway Alterations in Diffuse Midline Glioma, H3K27 Altered (n=86)

- MAPK pathway alterations
 - BRAF: 7 mutations
 - (4 V600E, 4 other, 1 fusion)
 - RAS: 3 mutations
 - (2 NRAS, 1 KRAS)
 - RAF: 1 mutation (RAF1 germline)
 - NF1: 15 mutations (1 germline)

Potentially Targetable Pathway Alterations in Diffuse Midline Glioma, H3K27 Altered (n=86)

- Selected other targetable alterations
 - PGFR1: 9 mutations
 - PDGFRA: 11 mutations
 - PI3K: 15 mutations
 (10 *PIK3CA*, 5 *PIK3R1*)
 - 7 Fusions:

(4 MET, 1 BRAF, 1 NRG1, 1 NTRK)

Germline: 5 alterations

Building on the MCI

- Cancer predisposition
- Collection to other clinical data sources
- Genomic discovery
- Clinical research in ultra rare tumor populations

NCI/CCDI/COG/BPC/IGM Teams

COG Leadership/APEC14B1

- Doug Hawkins
- Mary Beth Sullivan
- Thalia Beeles
- Michael Thomas, Kelly Gissy

NIH CTEP

Malcolm Smith

NCI CCDI

- Greg Reaman
- Subhashini Jagu
- Malcolm Smith
- Sean Burke
- Patrick Dunn

NH NATIONAL CANCER INSTITUTE

Biopathology Center

- Nilsa Ramirez
- Shountea Stover
- Natalie Bir
- Lisa Beaverson
- Yvonne Moyer

<u>IGM</u>

- Elaine Mardis
- Cathy Cottrell
- Greg Wheeler
- Ke Qin
- Katie Schieffer
- Grant Lammi

COG/CNS Operations Team

- Linda Springer
- Natasha Mirt, Melina Chanthanouvong
- Dalia Ortega, Shu-Lin Shen

COG CNS Statisticians

- Yu Wang
- Arzu Onar-Thomas

MCICNS@childrensoncologygroup.org

- Maryam Fouladi (Columbus, Ohio)
- Nick Gottardo (Perth, Australia)
- Sarah Leary (Seattle, Washington)
- Diana Thomas (Columbus, Ohio)

Join Us at Our Next Event

Comparing Proton and Photon Therapy: Insights from an NCI Pediatric Study

Tuesday, October 8, 2024, from 1:00–2:00 p.m. ET

Learn about a CCDI-supported study, the NCI Pediatric Proton and Photon Therapy Comparison Cohort. This webinar explores the study's design, current enrollment status, and state-of-the-art methods—developed specifically for this cohort—to determine a participant's amount of radiation exposure.

Learn more and register at events.cancer.gov/ccdi/webinar

How You Can Engage with CCDI

Learn about CCDI and subscribe to our monthly newsletter: cancer.gov/CCDI

Access CCDI data and resources: ccdi.cancer.gov

Questions? Email us at: NCIChildhoodCancerDataInitiative@mail.nih.gov

Thank you for attending!

cancer.gov/espanol

cancer.gov