A cancer of unknown primary (CUP) is defined as a biopsy-confirmed malignancy with no established primary site after pathological evaluation and radiographic studies. With the advent of comprehensive genomic profiling and positron emission tomography–computed tomography scanning, less than 1% of new cancer diagnoses are designated as CUP.[1-5]
Most CUPs are adenocarcinomas or undifferentiated tumors. Less commonly, squamous cell carcinomas, melanomas, sarcomas, germ cell tumors, and neuroendocrine tumors present with an undetermined primary site of origin.[6] In some patients, the primary site cannot be identified even at postmortem examination.
The prognosis for patients with CUP is poor. Approximately 30% of patients are alive at 1 year.[1,7] CUP is represented by a heterogeneous group of diseases, all of which have presented with metastasis as the primary manifestation. Although most diseases are relatively refractory to cytotoxic treatments, molecular and genetic diagnostics can identify targeted therapies that may result in a much better prognosis.[1] In each instance, the clinician must consider distinct clinical and pathological details when selecting appropriate, and potentially curative, management.
Survival is worse for patients with any of the following characteristics: [8-10]
Lymph node involvement or neuroendocrine histology were associated with longer survival in retrospective reviews.[8-10]
Patients who present with a normal LDH and an Eastern Cooperative Oncology Group performance status of 0 or 1 have a much better prognosis than those with a high LDH or worse performance status.[10]
A review of five case control studies and 14 cohort studies found a clear increased risk of CUP with smoking.[11]
Conceptually, CUP is a type of tumor that tends to metastasize early, unlike more common cases, in which the primary tumor is apparent, with or without metastasis. The pattern of spread of CUP at diagnosis can provide clues to the likelihood of the primary site being above or below the diaphragm. Lung metastases are twice as common in primary sites ultimately found to be above the diaphragm. Liver metastases are more common from primary disease sites below the diaphragm. A cancer presenting as CUP may have a significantly different pattern of metastasis than what is typically expected. For instance, when presenting as CUP, bone metastases are more common from pancreatic cancer and less common from lung cancer, unlike their typical presentation.
The pathologist has a central role in the evaluation of CUP. A thorough evaluation of an adequate specimen for histological, immunohistochemical, molecular diagnostics, next-generation sequencing (NGS), and, when appropriate, electron microscopic evaluations provides the most important clues in the diagnosis of CUP.[12-16] Pathological evaluations provide guidance for an appropriate clinical evaluation.
The following tests may be used to diagnose CUP:
Clinical, pathological, and molecular genetic tests have two goals. The first is to identify tumors that are responsive to available therapies. The second is to identify novel targeted therapies that might be applicable to the particular genetic profile.[5] The U.S. Food and Drug Administration (FDA) has approved some novel targeted therapies when a molecular target is identified in a cancer, regardless of primary site (including when no primary site is evident with metastases). Examples include tumors with a high mutational burden or elevated PD-1 or PD-L1, HER2 expression, NTRK expression, BRAF V600E expression, RET expression, EGFR mutations, ROS1 fusion, MET amplification, hormone receptor positivity, or homologous repair deficiency/microsatellite instability.[20-27]
Two randomized prospective trials published in 2019 compared standard chemotherapy (carboplatin and paclitaxel or cisplatin and gemcitabine) versus site-specific therapy using gene expression profiling.[28,29] There was no advantage to site-specific therapy in median progression-free survival (PFS) (5 months) or median overall survival (OS) (10–12 months) in either trial. However, most novel targeted therapies, including checkpoint inhibitors, were not available at that time.[28,29][Level of evidence B1]
A meta-analysis of five studies including 1,114 patients compared site-specific therapy from genomic profiling versus empiric therapy. There was no improvement in PFS (hazard ratio [HR], 0.93; 95% confidence interval [CI], 0.74–1.17; P = .534) or OS (HR, 0.75; 95% CI, 0.55–1.03; P = .069).[30][Level of evidence B1] Isolated benefit was seen in patients with more responsive tumors with an identified specifically targeted therapy.
In a retrospective analysis, a cohort of 97 patients with CUP underwent NGS of tissue- or blood-derived cell-free DNA (cfDNA). The median number of pathogenic genomic alterations found in tissue was four (range, 0–25), and the median number of genomic alterations found in cfDNA was two (range, 0–9).[31] Combination matched therapies based on these alterations might improve patient outcomes.[31] A matching score (MS) (roughly equivalent to the number of alterations targeted/total number of deleterious alterations) was calculated post hoc to quantify the degree of the tumor-to-drug match. Outcomes were compared for evaluable patients determined to be MS high (>50%; n = 15) or MS low (≤50%; n = 47). The median PFS was 10.4 months for MS-high patients and 2.8 months for MS-low patients (HR, 0.27; 95% CI, 0.11–0.64; P = .002). The OS was 15.8 months for MS-high patients and 6.9 months for MS-low patients (HR, 0.45; 95% CI, 0.17–1.16; P = .09).[31][Level of evidence C2]
A positron emission tomography–computed tomography (PET-CT) scan of the whole body can reveal the extent of disease and is especially useful in single-site or oligometastatic presentations, especially for patients with cervical lymph node metastases suspicious for a head and neck primary.[1-4]
PET-CT can be combined with somatostatin receptor PET-CT scans for neuroendocrine neoplasms or prostate-specific membrane antigen for suspected prostate cancer. A meta-analysis of 20 studies including 1,942 patients found a biopsy confirmed or clinically confirmed positive PET-CT scan in 40.9% of patients (95% confidence interval [CI], 40.0%–42.9%).[5]
A meta-analysis of 38 studies including 2,795 patients found that a fluorine F 18-fludeoxyglucose–PET or PET-CT scan led to management changes in 35% of patients (95% CI, 31%–40%).[6] In this meta-analysis, PET-CT identified a primary site in 22% of patients (95% CI, 18%–28%) and other metastases in 14% of patients (95% CI, 10%–19%).[6]
After staging with a PET-CT scan and magnetic resonance imaging of the head, the next step is molecular characterization and next-generation sequencing, preferably on the tissue biopsy or alternatively by analyzing circulating tumor cells on a blood sample (so-called liquid biopsy).
Twenty percent of patients with cancer of unknown primary (CUP) have favorable CUP. Favorable CUP is defined by the following characteristics:
According to a consensus paper, when a single site of metastasis can be confirmed by positron emission tomography–computed tomography (PET-CT) scan and magnetic resonance imaging (MRI) of the brain, local treatment with surgery or radiation therapy is an option. Local treatment has resulted in anecdotal cure in a few patients and several months to years of anecdotal relapse-free survival in a few patients.[1][Level of evidence C3] Anecdotal reports also support localized therapy for patients with fewer than five metastases, or even re-treatment with radiation therapy or surgery for patients with localized recurrence.[2][Level of evidence C3] A patient staged with CUP and a single brain metastasis may also do well with radiation therapy with or without surgery, as was reported in a prospective study of 33 patients.[3,4][Level of evidence C3]
PET-CT, MRI, and pan-endoscopy for biopsies and bilateral tonsillectomies are performed when squamous cell carcinoma is identified in cervical lymph nodes (not supraclavicular) in patients with CUP.[5]
Transoral robotic surgery may replace pan-endoscopy in the search for a primary site in the head and neck region.[6] Pathological studies should include testing for p16 expression to assess human papillomavirus status, Epstein-Barr virus status, and PD-L1 expression.[7]
For more information, see Metastatic Squamous Neck Cancer with Occult Primary Treatment.
Squamous cell carcinoma in an inguinal or iliac site is usually associated with a genital or anorectal primary. Examinations should focus on the vulva, vagina, and cervix in women, and the penis in men. In both sexes, the anorectal area should be examined, and any suspicious areas should be biopsied. Anecdotal cures have been reported in a few cases of isolated inguinal or iliac sites with an occult primary after staging studies.[8]
Less than 1% of female patients present with histological breast cancer in an axillary lymph node with an occult primary even after MRI of the breast.[9] Initial pathological studies should include estrogen-receptor, progesterone-receptor, and human epidermal growth factor (HER2) status, with further molecular and genetic studies done subsequently. Surgery, radiation therapy, neoadjuvant or adjuvant chemotherapy, and/or hormonal therapy are given according to guidelines for conventional breast cancer.[10-13]
For more information, see Breast Cancer Treatment.
The presence of blastic bone metastases or mixed blastic/lytic lesions will usually suggest breast cancer in women and prostate cancer in men. Diagnostic procedures and therapeutic options should proceed in these directions.
For more information, see Breast Cancer Treatment or Prostate Cancer Treatment.
The presence of elevated serum or tissue levels of AFP and/or beta-hCG suggests testicular cancer or extragonadal germ cell tumor in males. Men younger than 50 years with mediastinal adenopathy and pulmonary metastases have immunohistochemical evidence of AFP and/or beta-hCG in the extragonadal presentation. Diagnostic procedures and therapeutic options should proceed in these directions.
For more information, see Testicular Cancer Treatment and Extragonadal Germ Cell Tumors Treatment.
Women with peritoneal carcinomatosis of an undifferentiated adenocarcinoma or serous histology in the absence of an ovarian, fallopian tube, or uterine primary site should undergo diagnostic testing and a therapeutic approach for ovarian cancer.[14] This is considered a primary peritoneal serous carcinoma.
For more information, see Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment.
Clinical, pathological, and molecular genetic tests have two goals. The first is to identify tumors that are responsive to available therapies. The second is to identify novel targeted therapies that might be applicable to the particular genetic profile. The U.S. Food and Drug Administration has approved some novel targeted therapies when a molecular target is identified in a cancer, regardless of primary site or when no primary site is evident. Examples include tumors with high mutational burden, elevated PD-L1, elevated HER2, NTRK mutations, BRAF mutations, RET mutations, ROS1 fusion, MET amplification, HRD, MSI, and EGFR mutations.[15-22]
Neuroendocrine neoplasms are classified as well-differentiated neuroendocrine tumors (NETs) and slow progression neuroendocrine carcinomas (NEC). Well-differentiated NETs exhibit relatively indolent behavior. Slow progression NECs may exhibit highly aggressive behavior, with a rapid metastatic spread that is clinically indistinguishable from pancreatic adenocarcinoma or small cell lung cancer. The Ki-67 proliferative index rate is used to subclassify well-differentiated NETs into low, intermediate, and high-grade, while NECs are by default high-grade and poorly differentiated and divided into small- and large-cell NEC.
NETs of unknown primary origin may derive from the small bowel, pancreas, appendix, colon, rectum, or ovary.[23,24] Somatostatin receptor PET-CT scans are highly effective at identifying primary sites and metastatic sites for well-differentiated NETs, while fluorine F 18-fludeoxyglucose–PET is more appropriate for NEC.[25-27]
For more information, see Gastrointestinal Neuroendocrine Tumors Treatment.
Merkel cell carcinoma is a rare, aggressive, cutaneous malignancy of neuroendocrine origin, usually with primary lesions in the head and neck or in the extremities. However, it may present in the lymph nodes only, with no evident primary site.[28]
For more information, see Merkel Cell Carcinoma Treatment.
Approximately 5% of patients with malignant melanoma will present without a documented primary site. Diagnostic studies and therapeutic options should proceed with the paradigm of malignant melanoma.[29]
For more information, see Melanoma Treatment.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
Most patients with newly diagnosed cancer of unknown primary (CUP) are considered to have an unfavorable prognosis.
Treatment options for newly diagnosed unfavorable CUP include the following:
Clinical, pathological, and molecular genetic tests have two goals. The first is to identify tumors that are responsive to available therapies. The second is to identify novel targeted therapies that might be applicable to the particular genetic profile. The U.S. Food and Drug Administration (FDA) has approved some novel targeted therapies when a molecular target is identified in a cancer, regardless of primary site or when no primary site is evident. Examples include tumors with high mutational burden, elevated PD-L1, elevated human epidermal growth factor (HER2), NTRK mutations, BRAF mutations, RET mutations, ROS1 fusion, MET amplification, homologous repair deficiency, microsatellite instability, and EGFR mutations.[1-8]
Immunological therapy using checkpoint inhibitors such as nivolumab has been given to a general population with unfavorable CUP, resulting in a 22% overall response rate.[8] Better response rates can be seen when checkpoint inhibitors are given to patients with tumors expressing high levels of microsatellite instability (MSI-H) or deficient mismatch repair (dMMR).[7] Patients with high tumor mutational burden (TMB-H), defined as at least 7.75 mutations [8] or 10 mutations [9] per megabase, also have a higher response rate to immunotherapy.[6] The FDA has approved pembrolizumab in a tumor-agnostic situation (which includes CUP) for tumors with MSI-H, dMMR, or TMB-H.[7] High PD-L1 expression also correlates with higher response rates in patients who receive immunotherapy.[8] Further trials for patients with CUP are required to assess when to give checkpoint inhibitors and to define optimal cutoffs (1% to 50%) and scoring systems (cancer cell tumor proportion score vs. cancer-plus-surrounding cell combined positive score) to guide treatment.[10]
Patients with unfavorable CUP who are not candidates for molecular targeted therapy or immunotherapy are candidates for clinical trials. Cytotoxic chemotherapy can be a palliative therapy, but the choice of drugs has been based on a few small clinical studies, with no randomized trials establishing their benefit over best supportive care.[10] Several randomized prospective studies demonstrate that platinum-based doublet chemotherapy combined with a taxane or gemcitabine is equivalent to other chemotherapy in response rate and progression-free survival.[11-14][Level of evidence B1] Although most patients in these trials had adenocarcinoma or poorly differentiated carcinoma, patients with poorly differentiated squamous cell carcinoma were included.
Palliative care and hospice are options for patients with a poor performance status and relapsing disease.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
The use of follow-up studies including computed tomography or magnetic resonance imaging, is extrapolated from paradigms of other related malignancies with known primary sites. No prospective trials evaluating clinical surveillance have been conducted for patients with cancer of unknown primary.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
General Information About Cancer of Unknown Primary
Revised text to state that for patients with presumed cancer of unknown primary (CUP), a prior diagnosis of malignancy should be evaluated by pathological comparison, using genomic sequencing in both tissue and circulating tumor DNA, when available.
Added text about a retrospective analysis in which a cohort of 97 patients with CUP underwent next-generation sequencing of tissue- or blood-derived cell-free DNA. Combination matched therapies based on these alterations might improve patient outcomes. The median number of pathogenic genomic alterations found in tissue was determined and a matching score was calculated to compare the progression-free and overall survival of evaluable treated patients (cited Kato et al. as reference 31 and level of evidence C2).
This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of cancer of unknown primary. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Cancer of Unknown Primary (CUP) Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”
The preferred citation for this PDQ summary is:
PDQ® Adult Treatment Editorial Board. PDQ Cancer of Unknown Primary (CUP) Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/unknown-primary/hp/unknown-primary-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389252]
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.
Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.
More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.