Cancer in children and adolescents is rare, although the overall incidence of childhood cancer, including ALL, has slowly increased since 1975.[1] Dramatic improvements in survival have been achieved in children and adolescents with cancer.[1-3] Between 1975 and 2020, childhood cancer mortality decreased by more than 50%, although cancer remains the leading cause of death by disease past infancy among children in the United States.[1,2,4,5] For ALL, the 5-year survival rate increased over the same time, from 60% to approximately 90% for children younger than 15 years, and from 28% to more than 75% for adolescents aged 15 to 19 years.[2,3,6] Childhood and adolescent cancer survivors require close monitoring because cancer therapy side effects may persist or develop months or years after treatment. For specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors, see Late Effects of Treatment for Childhood Cancer.
ALL, the most common cancer diagnosed in children, represents approximately 25% of cancer diagnoses among children younger than 15 years.[7] In the United States, ALL occurs at an annual rate of approximately 40 cases per 1 million people aged 0 to 14 years and approximately 21 cases per 1 million people aged 15 to 19 years.[3] Approximately 3,100 children and adolescents younger than 20 years are diagnosed with ALL each year in the United States.[8] Since 1975, there has been a gradual increase in the incidence of ALL.[2,9]
A sharp peak in ALL incidence is observed among children aged 1 to 4 years (81 cases per 1 million per year), with rates decreasing to 24 cases per 1 million by age 10 years.[3] The incidence of ALL among children aged 1 to 4 years is approximately fourfold greater than that for infants and for children aged 10 years and older.[3]
The incidence of ALL appears to be highest in American Indian or Alaska Native children and adolescents (65.9 cases per 1 million) and Hispanic children and adolescents (48 cases per 1 million).[3,10,11] The incidence is substantially higher in White children than in Black children, with a twofold higher incidence of ALL from age 1 to 4 years in White children than in Black children.[3,10]
Childhood ALL originates in the T and B lymphoblasts in tissues with hematopoietic progenitor cells, such as the bone marrow and thymus (see Figure 1).
Marrow involvement of acute leukemia as seen by light microscopy is defined as follows:
Almost all patients with ALL present with an M3 marrow.
In the past, ALL lymphoblasts were classified using the French-American-British (FAB) criteria as having L1, L2, or L3 morphology.[12] However, it is no longer used because of the lack of independent prognostic significance and the subjective nature of this classification system.
Most cases of ALL that show L3 morphology express surface immunoglobulin (Ig) and have a MYC gene translocation identical to those seen in Burkitt lymphoma (i.e., t(8;14)(q24;q32), t(2;8)) that join MYC to one of the Ig genes. Patients with this specific rare form of leukemia (mature B-cell or Burkitt leukemia) should be treated according to protocols for Burkitt lymphoma. For more information about the treatment of mature B-cell lymphoma/leukemia and Burkitt lymphoma/leukemia, see Childhood Non-Hodgkin Lymphoma Treatment. Rarely, blasts with L1/L2 (not L3) morphology will express surface Ig.[13] These patients should be treated in the same way as patients with B-ALL.[13]
The primary accepted risk factors for ALL and associated genes (when relevant) include the following:
Children with Down syndrome have an increased risk of developing both ALL and AML,[26-28] with a cumulative risk of developing leukemia of approximately 2.1% by age 5 years and 2.7% by age 30 years.[26,28] These rates represent a 20- to 30-fold increased risk of ALL and over 100-fold increased risk of AML for children with Down syndrome.[27,28]
A genome-wide association study found that four susceptibility loci associated with B-ALL in the non-Down syndrome population (IKZF1, CDKN2A, ARID5B, and GATA3) were also associated with susceptibility to ALL in children with Down syndrome.[29] CDKN2A risk allele penetrance appeared to be higher for children with Down syndrome.
Approximately one-half to two-thirds of cases of acute leukemia in children with Down syndrome are ALL, and about 2% to 3% of childhood ALL cases occur in children with Down syndrome.[30-33] ALL in children with Down syndrome has an age distribution similar to that of ALL in children without Down syndrome, with a median age of 3 to 4 years.[30,31] In contrast, nearly all cases of AML in children with Down syndrome occur before the age of 4 years (median age, 1 year).[34]
Patients with ALL and Down syndrome have a lower incidence of both favorable (ETV6::RUNX1 fusion and hyperdiploidy [51–65 chromosomes]) and unfavorable (BCR::ABL1 or KMT2A::AFF1 fusions and hypodiploidy [<44 chromosomes]) genomic alterations and a near absence of T-cell phenotype.[30-32,34,35]
Approximately 50% to 60% of cases of ALL in children with Down syndrome have genomic alterations affecting CRLF2 that generally result in overexpression of the protein produced by this gene, which dimerizes with the interleukin-7 receptor alpha to form the receptor for the cytokine thymic stromal lymphopoietin.[36-38] The P2RY8::CRLF2 fusion occurs much more commonly than the IGH::CRLF2 fusion in children with Down syndrome, particularly in those of younger age.[38,39] CRLF2 genomic alterations are observed at a much lower frequency (<10%) in children with B-ALL who do not have Down syndrome; when they do occur, they are more often associated with the BCR::ABL1-like subtype.[38,40,41] In one retrospective study, the frequency of CRLF2 rearrangements was nine times higher in children with Down syndrome and ALL than in children with ALL but without Down syndrome (54.2% vs. 6.0%). In that study, only 25% of the cases with CRLF2 rearrangements and Down syndrome were classified as BCR::ABL1-like, compared with 54% of cases with CRLF2 rearrangements without Down syndrome.[42]
Based on the relatively small number of published series, it does not appear that genomic CRLF2 aberrations in patients with Down syndrome and ALL have prognostic relevance.[35,37] However, among patients with Down syndrome and CRLF2 rearrangements, those with the BCR::ABL1 signature appear to have a worse prognosis than those who do not have the BCR::ABL1 fusion.[42]
Approximately 20% to 30% of ALL cases arising in children with Down syndrome have somatically acquired JAK1 or JAK2 variants,[36,37,42-45] which are strongly associated with the presence of CRLF2 rearrangements.[36-38,42] JAK variants are uncommon among younger children with ALL who do not have Down syndrome but are observed more frequently in older children and adolescents with high-risk B-ALL, particularly in those with the BCR::ABL1-like subtype.[46] Preliminary evidence suggests no correlation between JAK2 variant status and 5-year event-free survival (EFS) in children with Down syndrome and ALL.[37,44]
IKZF1 gene deletions, observed in 20% to 35% of patients with Down syndrome and ALL, have been associated with a significantly worse outcome in this group of patients.[37,47,48]
Approximately 10% of patients with Down syndrome and ALL have genomic alterations leading to overexpression or abnormal activation of the CEBPD, CEBPA, and CEBPE genes.[42] Of the CEBP-activated cases with ALL and Down syndrome, approximately 40% also have FLT3 single nucleotide variants or insertions/deletions, compared with 4.1% in cases with Down syndrome and other ALL subtypes.
Genetic predisposition to ALL can be divided into several broad categories, as follows:
Genetic risk factors for T-ALL share some overlap with the genetic risk factors for B-ALL, but unique risk factors also exist. A genome-wide association study identified a risk allele near USP7 that was associated with an increased risk of developing T-ALL (odds ratio, 1.44) but not B-ALL. The risk allele was shown to be associated with reduced USP7 transcription, which is consistent with the finding that somatic loss-of-function variants in USP7 are observed in patients with T-ALL. USP7 germline and somatic variants are generally mutually exclusive and are most commonly observed in T-ALL patients with TAL1 alterations.[56]
Genetic risk factors that have similar impact for developing both B-ALL and T-ALL include CDKN2A, CDKN2B, and 8q24.21 (cis distal enhancer region variants for MYC).[56]
Development of ALL is a multistep process in most cases, with more than one genomic alteration required for frank leukemia to develop. In at least some cases of childhood ALL, the initial genomic alteration occurs in utero. Evidence to support this comes from the observation that the immunoglobulin or T-cell receptor antigen rearrangements that are unique to each patient’s leukemia cells can be detected in blood samples obtained at birth.[68,69] Similarly, in ALL characterized by specific chromosomal abnormalities, some patients have blood cells that carry at least one leukemic genomic abnormality at the time of birth, with additional cooperative genomic changes acquired postnatally.[68-70] Genomic studies of identical twins with concordant leukemia further support the prenatal origin of some leukemias.[68,71]
Evidence also exists that some children who never develop ALL are born with rare blood cells carrying a genomic alteration associated with ALL. Initial studies focused on the ETV6::RUNX1 translocation and used reverse transcriptase–polymerase chain reaction (PCR) to identify RNA transcripts indicating the presence of the gene fusion. For example, in one study, 1% of neonatal blood spots (Guthrie cards) tested positive for the ETV6::RUNX1 translocation.[72] While subsequent reports generally confirmed the presence of the ETV6::RUNX1 translocation at birth in some children, rates and extent of positivity varied widely.
To more definitively address this question, a highly sensitive and specific DNA-based approach (genomic inverse PCR for exploration of ligated breakpoints) was applied to DNA from 1,000 cord blood specimens and found that 5% of specimens had the ETV6::RUNX1 translocation.[73] When the same method was applied to 340 cord blood specimens to detect the TCF3::PBX1 fusion, two cord specimens (0.6%) were positive for its presence.[74] For both ETV6::RUNX1 and TCF3::PBX1, the percentage of cord blood specimens positive for one of the translocations far exceeds the percentage of children who will develop either type of ALL (<0.01%).
The typical and atypical symptoms and clinical findings of childhood ALL have been published.[75-77]
The evaluation needed to definitively diagnose childhood ALL has been published.[75-79]
Among children with ALL, approximately 98% attain remission. Approximately 85% of patients aged 1 to 18 years with newly diagnosed ALL treated on current regimens are expected to be long-term event-free survivors, with more than 90% of patients alive at 5 years.[80-83] In one study of patients with newly diagnosed ALL, relapses were rare (occurring in fewer than 1% of patients) by 6 to 7 years after diagnosis.[84] In addition, the excess risk of death associated with the leukemia diagnosis had decreased such that the mortality rate of the surviving patients at 6 to 7 years after diagnosis was similar to that of the general population.
Cytogenetic and genomic findings combined with minimal residual disease (MRD) results can define subsets of ALL with EFS rates exceeding 95% and, conversely, subsets with EFS rates of 50% or lower. For more information, see the sections on Cytogenetics/Genomics of Childhood ALL and Prognostic Factors Affecting Risk-Based Treatment.
Despite the treatment advances in childhood ALL, numerous important biological and therapeutic questions remain to be answered before the goal of curing every child with ALL with the least associated toxicity can be achieved. The systematic investigation of these issues requires large clinical trials, and the opportunity to participate in these trials is offered to most patients and families.
Clinical trials for children and adolescents with ALL are generally designed to compare therapy that is currently accepted as standard with investigational regimens that seek to improve cure rates and/or decrease toxicity. In certain trials in which the cure rate for the patient group is very high, therapy reduction questions may be asked. Much of the progress made in identifying curative therapies for childhood ALL and other childhood cancers has been achieved through investigator-driven discovery and tested in carefully randomized, controlled, multi-institutional clinical trials. Information about ongoing clinical trials is available from the NCI website.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
The 5th edition of the WHO Classification of Haematolymphoid Tumours lists the following entities for acute lymphoid leukemias:[1]
The category of B-ALL with other defined genetic abnormalities includes potential novel entities, including B-ALL with DUX4, MEF2D, ZNF384 or NUTM1 rearrangements; B-ALL with IG::MYC fusions; and B-ALL with PAX5alt or PAX5 p.P80R (NP_057953.1) abnormalities.
For acute leukemias of ambiguous lineage, the group of acute leukemias that have characteristics of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), the WHO classification system is summarized in Table 1.[2,3] The criteria for lineage assignment for a diagnosis of mixed phenotype acute leukemia (MPAL) are provided in Table 2.[4]
Condition | Definition |
---|---|
MPAL = mixed phenotype acute leukemia; NOS = not otherwise specified. | |
aAdapted from Béné MC: Biphenotypic, bilineal, ambiguous or mixed lineage: strange leukemias! Haematologica 94 (7): 891-3, 2009.[2] Obtained from Haematologica/the Hematology Journal website http://www.haematologica.org. | |
Acute undifferentiated leukemia | Acute leukemia that does not express any marker considered specific for either lymphoid or myeloid lineage |
MPAL with BCR::ABL1 (t(9;22)(q34;q11.2)) | Acute leukemia meeting the diagnostic criteria for mixed phenotype acute leukemia in which the blasts also have the (9;22) translocation or the BCR::ABL1 rearrangement |
MPAL with KMT2A rearranged (t(v;11q23)) | Acute leukemia meeting the diagnostic criteria for mixed phenotype acute leukemia in which the blasts also have a translocation involving the KMT2A gene |
MPAL, B/myeloid, NOS (B/M MPAL) | Acute leukemia meeting the diagnostic criteria for assignment to both B and myeloid lineage, in which the blasts lack genetic abnormalities involving BCR::ABL1 or KMT2A |
MPAL, T/myeloid, NOS (T/M MPAL) | Acute leukemia meeting the diagnostic criteria for assignment to both T and myeloid lineage, in which the blasts lack genetic abnormalities involving BCR::ABL1 or KMT2A |
MPAL, B/myeloid, NOS—rare types | Acute leukemia meeting the diagnostic criteria for assignment to both B and T lineage |
Other ambiguous lineage leukemias | Natural killer–cell lymphoblastic leukemia/lymphoma |
Lineage | Criteria |
---|---|
aAdapted from Arber et al.[4] | |
bStrong defined as equal to or brighter than the normal B or T cells in the sample. | |
Myeloid lineage | Myeloperoxidase (flow cytometry, immunohistochemistry, or cytochemistry); or monocytic differentiation (at least two of the following: nonspecific esterase cytochemistry, CD11c, CD14, CD64, lysozyme) |
T lineage | Strongb cytoplasmic CD3 (with antibodies to CD3 epsilon chain); or surface CD3 |
B lineage | Strongb CD19 with at least one of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10; or weak CD19 with at least two of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10 |
Leukemias of mixed phenotype may be seen in various presentations, including the following:
Biphenotypic cases represent most of the mixed phenotype leukemias.[5] Patients with B-myeloid biphenotypic leukemias lacking the ETV6::RUNX1 fusion have lower rates of complete remission (CR) and significantly worse event-free survival (EFS) rates compared with patients with B-ALL.[5] Cases of MPAL (B/myeloid) that have ZNF384 gene fusions have been reported,[6,7] and a genomic evaluation of MPAL found that ZNF384 gene fusions were present in approximately one-half of B/myeloid cases.[8]
Some studies suggest that patients with biphenotypic leukemia may fare better with a lymphoid, as opposed to a myeloid, treatment regimen.[9-12]; [13][Level of evidence C1] A large retrospective study from the international Berlin-Frankfurt-Münster group demonstrated that initial therapy with an ALL-type regimen was associated with a superior outcome compared with AML-type or combined ALL/AML regimens, particularly in cases with CD19 positivity or other lymphoid antigen expression. In this study, hematopoietic stem cell transplant in first CR was not beneficial, with the possible exception of cases with morphological evidence of persistent marrow disease (≥5% blasts) after the first month of treatment.[12]
For more information about key clinical and biological characteristics, as well as the prognostic significance for these entities, see the Cytogenetics/Genomics of Childhood ALL section.
The genomics of childhood acute lymphoblastic leukemia (ALL) has been extensively investigated, and multiple distinctive subtypes have been defined on the basis of cytogenetic and molecular characterizations, each with its own pattern of clinical and prognostic characteristics.[1,2] The discussion of the genomics of childhood ALL below is divided into three sections: the genomic alterations associated with B-ALL, followed by the genomic alterations associated with T-ALL and mixed phenotype acute leukemia (MPAL). Figures 2, 3, and 5 illustrate the distribution of B-ALL (stratified by National Cancer Institute [NCI] standard- and high-risk B-ALL) and T-ALL cases by cytogenetic/molecular subtypes.[1]
Throughout this section, the percentages of genomic subtypes from among all B-ALL and T-ALL cases are derived primarily from a report describing the genomic characterization of patients treated on several Children's Oncology Group (COG) and St. Jude Children's Research Hospital (SJCRH) clinical trials. Percentages by subtype are presented for NCI standard-risk and NCI high-risk patients with B-ALL (up to age 18 years).[1]
B-ALL is typified by genomic alterations that include: 1) gene fusions that lead to aberrant activity of transcription factors, 2) chromosomal gains and losses (e.g., hyperdiploidy or hypodiploidy), and 3) alterations leading to activation of tyrosine kinase genes.[1] Figures 2 and 3 illustrate the distribution of NCI standard-risk and high-risk B-ALL cases by 23 cytogenetic/molecular subtypes.[1] The two most common subtypes (hyperdiploid and ETV6::RUNX1 fusion) together account for approximately 60% of NCI standard-risk B-ALL cases, but only approximately 25% of NCI high-risk cases. Most other subtypes are much less common, with most occurring at frequencies less than 2% to 3% of B-ALL cases. The molecular and clinical characteristics of some of the subtypes are discussed below.
The genomic landscape of B-ALL is characterized by a range of genomic alterations that disrupt normal B-cell development and, in some cases, by variants in genes that provide a proliferation signal (e.g., activating variants in RAS family genes or variants/translocations leading to kinase pathway signaling). Genomic alterations leading to blockage of B-cell development include translocations (e.g., TCF3::PBX1 and ETV6::RUNX1 fusions), single nucleotide variants (e.g., IKZF1 and PAX5), and intragenic/intergenic deletions (e.g., IKZF1, PAX5, EBF, and ERG).[3]
The genomic alterations in B-ALL tend not to occur at random, but rather to cluster within subtypes that can be delineated by biological characteristics such as their gene expression profiles. Cases with recurring chromosomal translocations (e.g., TCF3::PBX1 and ETV6::RUNX1 fusions and KMT2A-rearranged ALL) have distinctive biological features and illustrate this point, as do the examples below of specific genomic alterations within unique biological subtypes:
Activating single nucleotide variants in kinase genes are uncommon in high-risk B-ALL. JAK genes are the primary kinases that are found to be altered. These variants are generally observed in patients with BCR::ABL1-like ALL who have CRLF2 abnormalities, although JAK2 variants are also observed in approximately 25% of children with Down syndrome and ALL, occurring exclusively in cases with CRLF2 gene rearrangements.[5,9-11] Several kinase genes and cytokine receptor genes are activated by translocations, as described below in the discussion of BCR::ABL1 ALL and BCR::ABL1-like ALL. FLT3 variants occur in a minority of cases (approximately 10%) of hyperdiploid ALL and KMT2A-rearranged ALL, and are rare in other subtypes.[12]
Understanding of the genomics of B-ALL at relapse is less advanced than the understanding of ALL genomics at diagnosis. Childhood ALL is often polyclonal at diagnosis and under the selective influence of therapy, some clones may be extinguished and new clones with distinctive genomic profiles may arise.[13] However, molecular subtype–defining lesions such as translocations and aneuploidy are almost always retained at relapse.[1,13] Of particular importance are new variants that arise at relapse that may be selected by specific components of therapy. As an example, variants in NT5C2 are not found at diagnosis, whereas specific variants in NT5C2 were observed in 7 of 44 (16%) and 9 of 20 (45%) cases of B-ALL with early relapse that were evaluated for this variant in two studies.[13,14] NT5C2 variants are uncommon in patients with late relapse, and they appear to induce resistance to mercaptopurine and thioguanine.[14] Another gene that is found altered only at relapse is PRSP1, a gene involved in purine biosynthesis.[15] Variants were observed in 13.0% of a Chinese cohort and 2.7% of a German cohort, and were observed in patients with on-treatment relapses. The PRSP1 variants observed in relapsed cases induce resistance to thiopurines in leukemia cell lines. CREBBP variants are also enriched at relapse and appear to be associated with increased resistance to glucocorticoids.[13,16] With increased understanding of the genomics of relapse, it may be possible to tailor upfront therapy to avoid relapse or detect resistance-inducing variants early and intervene before a frank relapse.
Several recurrent chromosomal abnormalities have been shown to have prognostic significance, especially in B-ALL. Some chromosomal alterations are associated with more favorable outcomes, such as favorable trisomies (51–65 chromosomes) and the ETV6::RUNX1 fusion.[17][Level of evidence B4] Other alterations historically have been associated with a poorer prognosis, including the BCR::ABL1 fusion (Philadelphia chromosome–positive [Ph+]; t(9;22)(q34;q11.2)), rearrangements of the KMT2A gene, hypodiploidy, and intrachromosomal amplification of the RUNX1 gene (iAMP21).[18]
In recognition of the clinical significance of many of these genomic alterations, the 5th edition revision of the World Health Organization Classification of Haematolymphoid Tumours lists the following entities for B-ALL:[19]
The category of B-ALL with other defined genetic abnormalities includes potential novel entities, including B-ALL with DUX4, MEF2D, ZNF384 or NUTM1 rearrangements; B-ALL with IG::MYC fusions; and B-ALL with PAX5alt or PAX5 p.P80R (NP_057953.1) abnormalities.
These and other chromosomal and genomic abnormalities for childhood ALL are described below.
High hyperdiploidy, defined as 51 to 65 chromosomes per cell or a DNA index greater than 1.16, occurs in approximately 33% of NCI standard-risk and 14% of NCI high-risk pediatric B-ALL cases.[1,20] Hyperdiploidy can be evaluated by measuring the DNA content of cells (DNA index) or by karyotyping. In cases with a normal karyotype or in which standard cytogenetic analysis was unsuccessful, interphase fluorescence in situ hybridization (FISH) may detect hidden hyperdiploidy.
High hyperdiploidy generally occurs in cases with clinically favorable prognostic factors (patients aged 1 to <10 years with a low white blood cell [WBC] count) and is an independent favorable prognostic factor.[20-22] Within the hyperdiploid range of 51 to 65 chromosomes, patients with higher modal numbers (58–66) appeared to have a better prognosis in one study.[22] Hyperdiploid leukemia cells are particularly susceptible to undergoing apoptosis and accumulate higher levels of methotrexate and its active polyglutamate metabolites,[23] which may explain the favorable outcome commonly observed in these cases.
While the overall outcome of patients with high hyperdiploidy is considered to be favorable, factors such as age, WBC count, specific trisomies, and early response to treatment have been shown to modify its prognostic significance.[24-26]
Multiple reports have described the prognostic significance of specific chromosome trisomies among children with hyperdiploid B-ALL.
Chromosomal translocations may be seen with high hyperdiploidy, and in those cases, patients are more appropriately risk-classified on the basis of the prognostic significance of the translocation. For instance, in one study, 8% of patients with the BCR::ABL1 fusion also had high hyperdiploidy,[30] and the outcome of these patients (treated without tyrosine kinase inhibitors) was inferior to that observed in non-BCR::ABL1 high hyperdiploid patients.
Certain patients with hyperdiploid ALL may have a hypodiploid clone that has doubled (masked hypodiploidy).[31] Molecular technologies, such as single nucleotide polymorphism microarrays to detect widespread loss of heterozygosity, can be used to identify patients with masked hypodiploidy.[31] These cases may be interpretable based on the pattern of gains and losses of specific chromosomes (hyperdiploidy with two and four copies of chromosomes rather than three copies). These patients have an unfavorable outcome, similar to those with hypodiploidy.[32]
Near triploidy (68–80 chromosomes) and near tetraploidy (>80 chromosomes) are much less common and appear to be biologically distinct from high hyperdiploidy.[33] Unlike high hyperdiploidy, a high proportion of near tetraploid cases harbor a cryptic ETV6::RUNX1 fusion.[33-35] Near triploidy and tetraploidy were previously thought to be associated with an unfavorable prognosis, but later studies suggest that this may not be the case.[33,35]
The genomic landscape of hyperdiploid ALL is characterized by variants in genes of the receptor tyrosine kinase (RTK)/RAS pathway in approximately one-half of cases. Genes encoding histone modifiers are also present in a recurring manner in a minority of cases. Analysis of variant profiles demonstrates that chromosomal gains are early events in the pathogenesis of hyperdiploid ALL and may occur in utero, while variants in RTK/RAS pathway genes are late events in leukemogenesis and are often subclonal.[1,36]
B-ALL cases with fewer than the normal number of chromosomes have been subdivided in various ways, with one report stratifying on the basis of modal chromosome number into the following four groups:[32]
Near-haploid cases represent approximately 2% of NCI standard-risk and 2% of NCI high-risk pediatric B-ALL.[1]
Low-hypodiploid cases represent approximately 0.5% of NCI standard-risk and 2.6% of NCI high-risk pediatric B-ALL cases.[1]
Most patients with hypodiploidy are in the near-haploid and low-hypodiploid groups, and both of these groups have an elevated risk of treatment failure compared with nonhypodiploid cases.[32,37] Patients with fewer than 44 chromosomes have a worse outcome than do patients with 44 or 45 chromosomes in their leukemic cells.[32] Several studies have shown that patients with high minimal residual disease (MRD) (≥0.01%) after induction do very poorly, with 5-year event-free survival (EFS) rates ranging from 25% to 47%. Although hypodiploid patients with low MRD after induction fare better (5-year EFS rates, 64%–75%), their outcomes are still inferior to most children with other types of ALL.[38-40]
The recurring genomic alterations of near-haploid and low-hypodiploid ALL appear to be distinctive from each other and from other types of ALL.[8] In near-haploid ALL, alterations targeting RTK signaling, RAS signaling, and IKZF3 are common.[41] In low-hypodiploid ALL, genetic alterations involving TP53, RB1, and IKZF2 are common. Importantly, the TP53 alterations observed in low-hypodiploid ALL are also present in nontumor cells in approximately 40% of cases, suggesting that these variants are germline and that low-hypodiploid ALL represents, in some cases, a manifestation of Li-Fraumeni syndrome.[8] Approximately two-thirds of patients with ALL and germline pathogenic TP53 variants have hypodiploid ALL.[42]
Fusion of the ETV6 gene on chromosome 12 to the RUNX1 gene on chromosome 21 is present in approximately 27% of NCI standard-risk and 10% of NCI high-risk pediatric B-ALL cases.[1,34]
The ETV6::RUNX1 fusion produces a cryptic translocation that is detected by methods such as FISH, rather than conventional cytogenetics, and it occurs most commonly in children aged 2 to 9 years.[43,44] Hispanic children with ALL have a lower incidence of ETV6::RUNX1 fusions than do White children.[45]
Reports generally indicate favorable EFS and overall survival (OS) rates in children with the ETV6::RUNX1 fusion; however, the prognostic impact of this genetic feature is modified by the following factors:[26,46-50]; [17][Level of evidence B4]
In one study of the treatment of newly diagnosed children with ALL, multivariate analysis of prognostic factors found age and leukocyte count, but not ETV6::RUNX1 fusion status, to be independent prognostic factors.[46] However, another large trial only enrolled patients classified as having favorable-risk B-ALL, with low-risk clinical features, either trisomies of 4, 10, and 17 or ETV6::RUNX1 fusion, and end induction MRD less than 0.01%. Patients had a 5-year continuous complete remission rate of 93.7% and a 6-year OS rate of 98.2% for patients with ETV6::RUNX1.[17] It does not appear that the presence of secondary cytogenetic abnormalities, such as deletion of ETV6 (12p) or CDKN2A/B (9p), impacts the outcome of patients with the ETV6::RUNX1 fusion.[50,51]
There is a higher frequency of late relapses in patients with ETV6::RUNX1 fusions compared with other relapsed B-ALL patients.[46,52] Patients with the ETV6::RUNX1 fusion who relapse seem to have a better outcome than other relapse patients,[53] with an especially favorable prognosis for patients who relapse more than 36 months from diagnosis.[54] Some relapses in patients with ETV6::RUNX1 fusions may represent a new independent second hit in a persistent preleukemic clone (with the first hit being the ETV6::RUNX1 translocation).[55,56]
The BCR::ABL1 fusion leads to production of a BCR::ABL1 fusion protein with tyrosine kinase activity (see Figure 4).[1] The BCR::ABL1 fusion occurs in approximately 2% of NCI standard-risk and 5% of NCI high-risk pediatric B-ALL cases.[1] The BCR::ABL1 fusion is also the leukemogenic driver for chronic myeloid leukemia (CML). The most common BCR breakpoint in CML is different from the most common BCR breakpoint in ALL. The breakpoint that typifies CML produces a larger fusion protein (termed p210) than the breakpoint most commonly observed for ALL (termed p190, a smaller fusion protein).
Ph+ ALL is more common in older children with B-ALL and high WBC counts, with the incidence of the BCR::ABL1 fusions increasing to about 25% in young adults with ALL.
Historically, the BCR::ABL1 fusion was associated with an extremely poor prognosis (especially in those who presented with a high WBC count or had a slow early response to initial therapy), and its presence had been considered an indication for allogeneic hematopoietic stem cell transplant (HSCT) in patients in first remission.[30,57-59] Inhibitors of the BCR::ABL1 tyrosine kinase, such as imatinib mesylate, are effective in patients with BCR::ABL1 ALL.[60] A study by the Children's Oncology Group (COG), which used intensive chemotherapy and concurrent imatinib mesylate given daily, demonstrated a 5-year EFS rate of 70% (± 12%), which was superior to the EFS rate of historical controls in the pre-tyrosine kinase inhibitor (imatinib mesylate) era. This result eliminated the recommendation of HSCT for patients with a good early response to chemotherapy using a tyrosine kinase inhibitor.[61,62]
The International Consensus Classification of acute lymphoblastic leukemia/lymphoma from 2022 divides BCR::ABL1–positive B-ALL into two subtypes: cases with lymphoid-only involvement and cases with multilineage involvement.[63] These subtypes differ in the timing of their transformation event. A multipotent progenitor serves as the target cell of origin for BCR::ABL1–positive B-ALL with multilineage involvement, and a later progenitor is the target cell of origin for BCR::ABL1–positive B-ALL with lymphoid-only involvement.
Rearrangements involving the KMT2A gene with more than 100 translocation partner genes result in the production of fusion oncoproteins. KMT2A gene rearrangements occur in up to 80% of infants with ALL. Beyond infancy, approximately 1% of NCI standard-risk and 4% of NCI high-risk pediatric B-ALL cases have KMT2A rearrangements.[1]
These rearrangements are generally associated with an increased risk of treatment failure, particularly in infants.[68-71] The KMT2A::AFF1 fusion (t(4;11)(q21;q23)) is the most common rearrangement involving the KMT2A gene in children with ALL and occurs in approximately 1% to 2% of childhood ALL.[69,72]
Patients with KMT2A::AFF1 fusions are usually infants with high WBC counts. These patients are more likely than other children with ALL to have central nervous system (CNS) disease and to have a poor response to initial therapy.[73] While both infants and adults with the KMT2A::AFF1 fusion are at high risk of treatment failure, children with the KMT2A::AFF1 fusion appear to have a better outcome.[68,69,74] Irrespective of the type of KMT2A gene rearrangement, infants with KMT2A-rearranged ALL have much worse event-free survival rates than non-infant pediatric patients with KMT2A-rearranged ALL.[68,69,74]
Whole-genome sequencing has determined that cases of infant ALL with KMT2A gene rearrangements have frequent subclonal NRAS or KRAS variants and few additional genomic alterations, none of which have clear clinical significance.[12,75] Deletion of the KMT2A gene has not been associated with an adverse prognosis.[76]
Of interest, the KMT2A::MLLT1 fusion (t(11;19)(q23;p13.3)) occurs in approximately 1% of ALL cases and occurs in both early B-lineage ALL and T-ALL.[77] Outcome for infants with the KMT2A::MLLT1 fusion is poor, but outcome appears relatively favorable in older children with T-ALL and the KMT2A::MLLT1 fusion.[77]
Fusion of the TCF3 gene on chromosome 19 to the PBX1 gene on chromosome 1 is present in approximately 4% of NCI standard-risk and 5% of NCI high-risk pediatric B-ALL cases.[1,78,79] The TCF3::PBX1 fusion may occur as either a balanced translocation or as an unbalanced translocation and is the primary recurring genomic alteration of the pre-B–ALL immunophenotype (cytoplasmic immunoglobulin positive).[80] Black children are relatively more likely than White children to have pre-B–ALL with the TCF3::PBX1 fusion.[81]
The TCF3::PBX1 fusion had been associated with inferior outcome in the context of antimetabolite-based therapy,[82] but the adverse prognostic significance was largely negated by more aggressive multiagent therapies.[79,83] More specifically, in a trial conducted by St. Jude Children's Research Hospital (SJCRH) in which all patients were treated without cranial radiation, patients with the TCF3::PBX1 fusion had an overall outcome comparable to children lacking this translocation, but with a higher risk of CNS relapse and a lower rate of bone marrow relapse, suggesting that more intensive CNS therapy may be needed for these patients.[84,85]
The TCF3::HLF fusion occurs in less than 1% of pediatric ALL cases. ALL with the TCF3::HLF fusion is associated with disseminated intravascular coagulation and hypercalcemia at diagnosis. Outcome is very poor for children with the TCF3::HLF fusion, with a literature review noting mortality for 20 of 21 cases reported.[86] In addition to the TCF3::HLF fusion, the genomic landscape of this ALL subtype was characterized by deletions in genes involved in B-cell development (PAX5, BTG1, and VPREB1) and by variants in RAS pathway genes (NRAS, KRAS, and PTPN11).[80]
Approximately 3% of NCI standard-risk and 6% of NCI high-risk pediatric B-ALL patients have a rearrangement involving DUX4 that leads to its overexpression.[1,6,7] East Asian ancestry was linked to an increased prevalence of DUX4-rearranged ALL (favorable).[87] The most common rearrangement produces IGH::DUX4 fusions, with ERG::DUX4 fusions also observed.[88] DUX4-rearranged cases show a distinctive gene expression pattern that was initially identified as being associated with focal deletions in ERG,[88-91] and one-half to more than two-thirds of these cases have focal intragenic deletions involving ERG that are not observed in other ALL subtypes.[6,88] ERG deletions often appear to be clonal, but using sensitive detection methodology, it appears that most cases are polyclonal.[88] IKZF1 alterations are observed in 20% to 40% of DUX4-rearranged ALL.[6,7]
ERG deletion connotes an excellent prognosis, with OS rates exceeding 90%. Even when the IZKF1 deletion is present, prognosis remains highly favorable.[89-92] While patients with DUX4-rearranged ALL have an overall favorable prognosis, there is uncertainty as to whether this applies to both ERG-deleted and ERG-intact cases. In a study of 50 patients with DUX4-rearranged ALL, patients with an ERG deletion detected by genomic PCR (n = 33) had a more favorable EFS rate of approximately 90% than did patients with intact ERG (n = 17), with an EFS rate of approximately 70%.[90]
Gene fusions involving MEF2D, a transcription factor that is expressed during B-cell development, are observed in approximately 0.3% of NCI standard-risk and 3% of NCI high-risk pediatric B-ALL cases.[1,93,94]
Although multiple fusion partners may occur, most cases involve BCL9, which is located on chromosome 1q21, as is MEF2D.[93,95] The interstitial deletion producing the MEF2D::BCL9 fusion is too small to be detected by conventional cytogenetic methods. Cases with MEF2D gene fusions show a distinctive gene expression profile, except for rare cases with MEF2D::CSFR1 that have a BCR::ABL1-like gene expression profile.[93,96]
The median age at diagnosis for cases of MEF2D-rearranged ALL in studies that included both adult and pediatric patients was 12 to 14 years.[93,94] For 22 children with MEF2D-rearranged ALL enrolled in a high-risk ALL clinical trial, the 5-year EFS rate was 72% (standard error, ± 10%), which was inferior to that for other patients.[93]
ZNF384 is a transcription factor that is rearranged in approximately 0.3% of NCI standard-risk and 2.7% of NCI high-risk pediatric B-ALL cases.[1,93,97,98]
East Asian ancestry was associated with an increased prevalence of ZNF384.[87] Multiple fusion partners for ZNF384 have been reported, including ARID1B, CREBBP, EP300, SMARCA2, TAF15, and TCF3. Regardless of the fusion partner, ZNF384-rearranged ALL cases show a distinctive gene expression profile.[93,97,98] ZNF384 rearrangement does not appear to confer independent prognostic significance.[93,97,98] However, within the subset of patients with ZNF384 rearrangements, patients with EP300::ZNF384 fusions have lower relapse rates than patients with other ZNF384 fusion partners.[99] The immunophenotype of B-ALL with ZNF384 rearrangement is characterized by weak or negative CD10 expression, with expression of CD13 and/or CD33 commonly observed.[97,98] Cases of mixed phenotype acute leukemia (MPAL) (B/myeloid) that have ZNF384 gene fusions have been reported,[100,101] and a genomic evaluation of MPAL found that ZNF384 gene fusions were present in approximately one-half of B/myeloid cases.[102]
NUTM1-rearranged B-ALL is most commonly observed in infants, representing 3% to 5% of overall cases of B-ALL in this age group and approximately 20% of infant B-ALL cases lacking the KMT2A rearrangement.[103] The frequency of NUTM1 rearrangement is lower in children after infancy (<1% of cases).[1,103]
The NUTM1 gene is located on chromosome 15q14, and some cases of B-ALL with NUTM1 rearrangements show chromosome 15q aberrations, but other cases are cryptic and have no cytogenetic abnormalities.[104] RNA sequencing, as well as break-apart FISH, can be used to detect the presence of the NUTM1 rearrangement.[103]
The NUTM1 rearrangement appears to be associated with a favorable outcome.[103,105] Among 35 infants with NUTM1-rearranged B-ALL who were treated on Interfant protocols, all patients achieved remission and no relapses were observed.[103] For the 32 children older than 12 months with NUTM1-rearranged B-ALL, the 4-year EFS and OS rates were 92% and 100%, respectively.
This entity is included in the 2016 revision of the World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues.[106] The finding of t(5;14)(q31.1;q32.3) in patients with ALL and hypereosinophilia in the 1980s was followed by the identification of the IGH::IL3 fusion as the underlying genetic basis for the condition.[107,108] The joining of the IGH locus to the promoter region of the IL3 gene leads to dysregulation of IL3 expression.[109] Cytogenetic abnormalities in children with ALL and eosinophilia are variable, with only a subset resulting from the IGH::IL3 fusion.[110]
The number of cases of IGH::IL3 ALL described in the published literature is too small to assess the prognostic significance of the IGH::IL3 fusion. Diagnosis of cases of IGH::IL3 ALL may be delayed because the ALL clone in the bone marrow may be small, and because it can present with hypereosinophilia in the absence of cytopenias and circulating blasts.[106]
iAMP21 occurs in approximately 5% of NCI standard-risk and 7% of NCI high-risk pediatric B-ALL cases.[1] iAMP21 is generally diagnosed using FISH and is defined by the presence of greater than or equal to five RUNX1 signals per cell (or ≥3 extra copies of RUNX1 on a single abnormal chromosome).[106] iAMP21 can also be identified by chromosomal microarray analysis. Uncommonly, iAMP21 with an atypical genomic pattern (e.g., amplification of the genomic region but with less than 5 RUNX1 signals or having at least 5 RUNX1 signals with some located apart from the abnormal iAMP21-chromosome) is identified by microarray but not RUNX1 FISH.[111] The prognostic significance of iAMP21 defined only by microarray has not been characterized.
iAMP21 is associated with older age (median, approximately 10 years), presenting WBC count of less than 50 × 109/L, a slight female preponderance, and high end-induction MRD.[112-114] Analysis of variant signatures indicates that gene amplifications in iAMP21 occur later in leukemogenesis, which is in contrast to those of hyperdiploid ALL that can arise early in life and even in utero.[1]
The United Kingdom Acute Lymphoblastic Leukaemia (UKALL) clinical trials group initially reported that the presence of iAMP21 conferred a poor prognosis in patients treated in the MRC ALL 97/99 trial (5-year EFS rate, 29%).[18] In their subsequent trial (UKALL2003 [NCT00222612]), patients with iAMP21 were assigned to a more intensive chemotherapy regimen and had a markedly better outcome (5-year EFS rate, 78%).[113] Similarly, the COG has reported that iAMP21 was associated with a significantly inferior outcome in NCI standard-risk patients (4-year EFS rate, 73% for iAMP21 vs. 92% in others), but not in NCI high-risk patients (4-year EFS rate, 73% vs. 80%).[112] On multivariate analysis, iAMP21 was an independent predictor of inferior outcome only in NCI standard-risk patients.[112] The results of the UKALL2003 and COG studies suggest that treatment of iAMP21 patients with high-risk chemotherapy regimens abrogates its adverse prognostic significance and obviates the need for HSCT in first remission.[114]
Gene expression analysis identified two distinctive ALL subsets with PAX5 genomic alterations, called PAX5alt and PAX5 p.P80R (NP_057953.1).[115] The alterations in the PAX5alt subtype included rearrangements, sequence variants, and focal intragenic amplifications.
PAX5alt. PAX5 rearrangements have been reported to represent approximately 3% of NCI standard-risk and 11% of NCI high-risk pediatric B-ALL cases.[1] More than 20 partner genes for PAX5 have been described,[115] with PAX5::ETV6, the primary genomic alteration in dic(9;12)(p13;p13),[116] being the most common gene fusion.[115]
Intragenic amplification of PAX5 was identified in approximately 1% of B-ALL cases, and it was usually detected in cases lacking known leukemia-driver genomic alterations.[117] Cases with PAX5 amplification show male predominance (66%), with most (55%) having NCI high-risk status. For a cohort of patients with PAX5 amplification diagnosed between 1993 and 2015, the 5-year EFS rate was 49% (95% confidence interval [CI], 36%–61%), and the OS rate was 67% (95% CI, 54%–77%), suggesting a relatively poor prognosis for patients with this B-ALL subtype.
PAX5 p.P80R (NP_057953.1). PAX5 with a p.P80R variant shows a gene expression profile distinctive from that of other cases with PAX5 alterations.[115] Cases with PAX5 p.P80R represent approximately 0.3% of NCI standard-risk and 1.8% of NCI high-risk pediatric B-ALL.[1] PAX5 p.P80R B-ALL appears to occur more frequently in the adolescent and young adult (AYA) and adult populations (3.1% and 4.2%, respectively).[115]
Outcome for the pediatric patients with PAX5 p.P80R and PAX5alt treated in a COG clinical trial appears to be intermediate (5-year EFS rate, approximately 75%).[115] PAX5alt rearrangements have also been detected in infant patients with ALL, with a reported outcome similar to KMT2A-rearranged infant ALL.[105]
BCR::ABL1-negative patients with a gene expression profile similar to BCR::ABL1-positive patients have been referred to as Ph-like,[118-120] and are now referred to as BCR::ABL1-like.[19] This occurs in 10% to 20% of pediatric B-ALL patients, increasing in frequency with age, and has been associated with an IKZF1 deletion or variant.[1,9,118,119,121,122]
Retrospective analyses have indicated that patients with BCR::ABL1-like ALL have a poor prognosis.[5,118] In one series, the 5-year EFS rate for NCI high-risk children and adolescents with BCR::ABL1-like ALL was 58% and 41%, respectively.[5] While it is more frequent in older and higher-risk patients, the BCR::ABL1-like subtype has also been identified in NCI standard-risk patients. In a COG study, 13.6% of 1,023 NCI standard-risk B-ALL patients were found to have BCR::ABL1-like ALL; these patients had an inferior EFS rate compared with non–BCR::ABL1-like standard-risk patients (82% vs. 91%), although no difference in OS rate (93% vs. 96%) was noted.[123] In one study of 40 BCR::ABL1-like patients, the adverse prognostic significance of this subtype appeared to be abrogated when patients were treated with risk-directed therapy on the basis of MRD levels.[124]
The hallmark of BCR::ABL1-like ALL is activated kinase signaling, with approximately 35% to 50% containing CRLF2 genomic alterations [1,120,125] and half of those cases containing concomitant JAK variants.[126]
Many of the remaining cases of BCR::ABL1-like ALL have been noted to have a series of translocations involving tyrosine-kinase encoding ABL-class fusion genes, including ABL1, ABL2, CSF1R, and PDGFRB.[5,121,127] Fusion proteins from these gene combinations have been noted in some cases to be transformative and have responded to tyrosine kinase inhibitors both in vitro and in vivo,[121,128] suggesting potential therapeutic strategies for these patients. Preclinical drug sensitivity assays have suggested that sensitivity to different tyrosine kinase inhibitors (TKIs) may vary by the specific ABL-class gene involved in the fusion. In one study of ex vivo TKI sensitivity, samples from patients with PDGFRB fusions were sensitive to imatinib. However, these samples were less sensitive to dasatinib and bosutinib than samples from patients with ABL1 fusions (including BCR::ABL1).[128] Clinical studies have not yet confirmed the differing responses to various TKIs by type of ABL-class fusion.
BCR::ABL1-like ALL cases with non-CRLF2 genomic alterations represent approximately 3% of NCI standard-risk and 8% of NCI high-risk pediatric B-ALL cases.[1] In a retrospective study of 122 pediatric patients (aged 1–18 years) with ABL-class fusions (all treated without tyrosine kinase inhibitors), the 5-year EFS rate was 59%, and the OS rate was 76%.[129]
Approximately 9% of BCR::ABL1-like ALL cases result from rearrangements that lead to overexpression of a truncated erythropoietin receptor (EPOR).[130] The C-terminal region of the receptor that is lost is the region that is altered in primary familial congenital polycythemia and that controls stability of the EPOR. The portion of the EPOR remaining is sufficient for JAK-STAT activation and for driving leukemia development. Single nucleotide variants in kinase genes, aside from those in JAK1 and JAK2, are uncommon in patients with BCR::ABL1-like ALL.[9]
CRLF2. Genomic alterations in CRLF2, a cytokine receptor gene located on the pseudoautosomal regions of the sex chromosomes, have been identified in 5% to 10% of cases of B-ALL. These alterations represent approximately 50% of cases of BCR::ABL1-like ALL.[131-133] The chromosomal abnormalities that commonly lead to CRLF2 overexpression include translocations of the IGH locus (chromosome 14) to CRLF2 and interstitial deletions in pseudoautosomal regions of the sex chromosomes, resulting in a P2RY8::CRLF2 fusion.[9,125,131,132] These two genomic alterations are associated with distinctive clinical and biological characteristics.
BCR::ABL1-like B-ALL with CRLF2 genomic alterations is observed in approximately 2% of NCI standard-risk and 5% of NCI high-risk pediatric B-ALL cases.[1]
ALL with genomic alterations in CRLF2 occurs at a higher incidence in children with Hispanic or Latino genetic ancestry [125,134,135] and American Indian genetic ancestry.[87] In a study of 205 children with high-risk B-ALL, 18 of 51 (35.3%) Hispanic or Latino patients had CRLF2 rearrangements, compared with 11 of 154 (7.1%) cases of other declared ethnicity.[125] In a second study, the frequency of IGH::CRLF2 fusions was increased in Hispanic or Latino children compared with non-Hispanic or non-Latino children with B-ALL (13.2% vs. 3.6%).[134,135] In this study, the percentage of B-ALL with P2RY8::CRLF2 fusions was approximately 6% and was not affected by ethnicity.
The P2RY8::CRLF2 fusion is observed in 70% to 75% of pediatric patients with CRLF2 genomic alterations, and it occurs in younger patients (median age, approximately 4 years vs. 14 years for patients with IGH::CRLF2).[136,137] P2RY8::CRLF2 occurs not infrequently with established chromosomal abnormalities (e.g., hyperdiploidy, iAMP21, dic(9;20)), while IGH::CRLF2 is generally mutually exclusive with known cytogenetic subgroups. CRLF2 genomic alterations are observed in approximately 60% of patients with Down syndrome and ALL, with P2RY8::CRLF2 fusions being more common than IGH::CRLF2 (approximately 80%–85% vs. 15%–20%).[132,136]
IGH::CRLF2 and P2RY8::CRLF2 commonly occur as an early event in B-ALL development and show clonal prevalence.[138] However, in some cases they appear to be a late event and show subclonal prevalence.[138] Loss of the CRLF2 genomic abnormality in some cases at relapse confirms the subclonal nature of the alteration in these cases.[136,139]
CRLF2 abnormalities are strongly associated with the presence of IKZF1 deletions. Deletions of IKZF1 are more common in cases with IGH::CRLF2 fusions than in cases with P2RY8::CRLF2 fusions.[137] Hispanic and Latino children have a higher frequency of CRLF2 rearrangements with IKZF1 deletions than non-Hispanic children.[135]
Other recurring genomic alterations found in association with CRLF2 alterations include deletions in genes associated with B-cell differentiation (e.g., PAX5, BTG1, EBF1, etc.) and cell cycle control (CDKN2A), as well as genomic alterations activating JAK-STAT pathway signaling (e.g., IL7R and JAK variants).[5,125,126,132,140]
Although the results of several retrospective studies suggest that CRLF2 abnormalities may have adverse prognostic significance in univariate analyses, most do not find this abnormality to be an independent predictor of outcome.[125,131,132,141,142] For example, in a large European study, increased expression of CRLF2 was not associated with unfavorable outcome in multivariate analysis, while IKZF1 deletion and BCR::ABL1-like expression signatures were associated with unfavorable outcome.[122] Controversy exists about whether the prognostic significance of CRLF2 abnormalities should be analyzed on the basis of CRLF2 overexpression or on the presence of CRLF2 genomic alterations.[141,142]
IKZF1 deletions, including deletions of the entire gene and deletions of specific exons, are present in approximately 15% of B-ALL cases. Less commonly, IKZF1 can be inactivated by deleterious single nucleotide variants.[119]
Cases with IKZF1 deletions tend to occur in older children, have a higher WBC count at diagnosis, and are therefore more common in NCI high-risk patients than in NCI standard-risk patients.[3,119,140,143,144] A high proportion of BCR::ABL1-positive cases have a deletion of IKZF1,[4,140] and ALL arising in children with Down syndrome appears to have elevated rates of IKZF1 deletions.[145] IKZF1 deletions are also common in cases with CRLF2 genomic alterations and in BCR::ABL1-like ALL cases.[89,118,140] IKZF1 deletions also occur more commonly in Hispanic children. In one study from a single cancer center, IKZF1 deletions were observed in 29% of Hispanic children, compared with 11% of non-Hispanic children (P = .001).[135]
Multiple reports have documented the adverse prognostic significance of an IKZF1 deletion, and most studies have reported that this deletion is an independent predictor of poor outcome in multivariate analyses.[89,118,119,122,140,146-153]; [154][Level of evidence B4] However, the prognostic significance of IKZF1 may not apply equally across ALL biological subtypes, as illustrated by the apparent lack of prognostic significance in patients with ERG deletions.[89-91] Similarly, the prognostic significance of the IKZF1 deletion also appeared to be minimized in a cohort of COG patients with DUX4-rearranged ALL and with ERG transcriptional dysregulation that frequently occurred by ERG deletion.[7] The Associazione Italiana di Ematologia e Oncologia Pediatrica–Berlin-Frankfurt-Münster group reported that IKZF1 deletions were significant adverse prognostic factors only in B-ALL patients with high end-induction MRD and in whom co-occurrence of deletions of CDKN2A, CDKN2B, PAX5, or PAR1 (in the absence of ERG deletion) were identified.[155] This combination of IKZF1 deletion with accompanying deletion of select other genes is termed IKZF1PLUS.[155] In a single-center study, the IKZF1PLUS profile was more commonly observed in Hispanic children than in non-Hispanic children (20% vs. 5%, P = .001).[135]
The poor prognosis associated with IKZF1 alterations appears to be enhanced by the concomitant finding of deletion of 22q11.22. In a study of 1,310 patients with B-ALL, approximately one-half of the patients with IKZF1 alterations also had deletion of 22q11.22. The 5-year EFS rate was 43.3% for those with both abnormalities, compared with 68.5% for patients with IKZF1 alterations and wild-type 22q11.22 (P < .001).[156]
There are few published results of changing therapy on the basis of IKZF1 gene status. The Malaysia-Singapore group published results of two consecutive trials. In the first trial (MS2003), IKZF1 status was not considered in risk stratification, while in the subsequent trial (MS2010), IKZF1-deleted patients were excluded from the standard-risk group. Thus, more IKZF1-deleted patients in the MS2010 trial received intensified therapy. Patients with IKZF1-deleted ALL had improved outcomes in MS2010 compared with patients in MS2003, but interpretation of this observation is limited by other changes in risk stratification and therapeutic differences between the two trials.[157][Level of evidence B4]
In the Dutch ALL11 study, patients with IKZF1 deletions had maintenance therapy extended by 1 year, with the goal of improving outcomes.[158] The landmark analysis demonstrated an almost threefold reduction in relapse rate and an improvement in the 2-year EFS rate (from 74.4% to 91.2%), compared with historical controls.
MYC gene rearrangements are a rare but recurrent finding in pediatric patients with B-ALL. Patients with rearrangements of the MYC gene and the IGH2, IGK, and IGL genes at 14q32, 2p12, and 22q11.2, respectively, have been reported.[159-161] The lymphoblasts typically exhibit a precursor B-cell immunophenotype, with a French-American-British (FAB) L2 or L3 morphology, with no expression of surface immunoglobulin and kappa or lambda light chains. Concurrent MYC gene rearrangements have been observed along with additional cytogenetic rearrangements such as IGH::BCL2 or KMT2A.[161] Patients reported in the literature have been variably treated with ALL therapy or with mature B leukemia/lymphoma treatment protocols, and the optimal treatment for this patient group remains uncertain.[161]
The largest study that examined the genomic landscape of ALL arising in children with Down syndrome included 295 patients enrolled in COG clinical trials.[11]
T-ALL is characterized by genomic alterations leading to activation of transcriptional programs related to T-cell development and by a high frequency of cases (approximately 60%) with variants in NOTCH1 and/or FBXW7 that result in activation of the NOTCH1 pathway.[162] Cytogenetic abnormalities common in B-ALL (e.g., hyperdiploidy, 51–65 chromosomes) are rare in T-ALL.[163,164]
In Figure 5 below, pediatric T-ALL cases are divided into 10 molecular subtypes based on their RNA expression and gene variant status. These cases were derived from patients enrolled in SJCRH and COG clinical trials.[1] Each subtype is associated with dysregulation of specific genes involved in T-cell development. Within a subtype, multiple mechanisms may drive expression of the dysregulated gene. For example, for the largest subtype, TAL1, overexpression of TAL1 can result from the STIL::TAL1 fusion and a noncoding insertion variant upstream of the TAL1 locus that creates a MYB-binding site.[162,165] As another example, within the HOXA group, overexpression of HOXA9 can result from multiple gene fusions, including KMT2A rearrangements, MLLT10 rearrangements, and SET::NUP214 fusions.[1,162,166] In contrast to the molecular subtypes of B-ALL, the molecular subtypes of T-ALL are not used to define treatment interventions based on their prognostic significance or therapeutic implications.
Notch pathway signaling is commonly activated by NOTCH1 and FBXW7 gene variants in T-ALL, and these are the most commonly altered genes in pediatric T-ALL.[162,167] NOTCH1-activating gene variants occur in approximately 50% to 60% of T-ALL cases, and FBXW7-inactivating gene variants occur in approximately 15% of cases. Approximately 60% of T-ALL cases have Notch pathway activation by variants in at least one of these genes.[168,169]
The prognostic significance of NOTCH1 and FBXW7 variants may be modulated by genomic alterations in RAS and PTEN. The French Acute Lymphoblastic Leukaemia Study Group (FRALLE) and the Group for Research on Adult Acute Lymphoblastic Leukemia reported that patients having altered NOTCH1 or FBXW7 and wild-type PTEN and RAS constituted a favorable-risk group (i.e., low-risk group), while patients with PTEN or RAS variants, regardless of NOTCH1 and FBXW7 status, have a significantly higher risk of treatment failure (i.e., high-risk group).[170,171] In the FRALLE study, the 5-year disease-free survival rate was 88% for the genetic low-risk group of patients and 60% for the genetic high-risk group of patients.[170] However, using the same criteria to define the genetic risk group, the Dana-Farber Cancer Institute consortium was unable to replicate these results. They reported a 5-year EFS rate of 86% for genetic low-risk patients and 79% for the genetic high-risk patients, a difference that was not statistically significant (P = .26).[169]
Multiple chromosomal translocations have been identified in T-ALL that lead to deregulated expression of the target genes. These chromosome rearrangements fuse genes encoding transcription factors (e.g., TAL1, TAL2, LMO1, LMO2, LYL1, TLX1, TLX3, NKX2-I, HOXA, and MYB) to one of the T-cell receptor loci (or to other genes) and result in deregulated expression of these transcription factors in leukemia cells.[162,163,172-176] These translocations are often not apparent by examining a standard karyotype, but can be identified using more sensitive screening techniques, including FISH or PCR.[163] Variants in a noncoding region near the TAL1 gene that produce a super-enhancer upstream of TAL1 represent nontranslocation genomic alterations that can also activate TAL1 transcription to induce T-ALL.[165]
Translocations resulting in chimeric fusion proteins are also observed in T-ALL.[170]
Detailed molecular characterization of ETP ALL showed this entity to be highly heterogeneous at the molecular level, with no single gene affected by variant or copy number alteration in more than one-third of cases.[188] Compared with other T-ALL cases, the ETP group had a lower rate of NOTCH1 variants and significantly higher frequencies of alterations in genes regulating cytokine receptors and RAS signaling, hematopoietic development, and histone modification. The transcriptional profile of ETP ALL shows similarities to that of normal hematopoietic stem cells and myeloid leukemia stem cells.[188]
Studies have found that the absence of biallelic deletion of the TCR-gamma locus (ABD), as detected by comparative genomic hybridization and/or quantitative DNA-PCR, was associated with early treatment failure in patients with T-ALL.[189,190] ABD is characteristic of early thymic precursor cells, and many of the T-ALL patients with ABD have an immunophenotype consistent with the diagnosis of ETP phenotype.
Allele-specific, generally high expression of BCL11B plays an oncogenic role in a subset of cases identified as ETP ALL (7 of 58 in one study) as well as in up to 30% to 40% of lineage ambiguous leukemia T/M mixed phenotype acute leukemia (T/M MPAL).[191,192] The dysregulated expression of BCL11B can occur by multiple mechanisms.
For acute leukemias of ambiguous lineage, the WHO classification system is summarized in Table 3.[193,194] The criteria for lineage assignment for a diagnosis of MPAL are provided in Table 4.[106]
Condition | Definition |
---|---|
MPAL = mixed phenotype acute leukemia; NOS = not otherwise specified. | |
aAdapted from Béné MC: Biphenotypic, bilineal, ambiguous or mixed lineage: strange leukemias! Haematologica 94 (7): 891-3, 2009.[193] Obtained from Haematologica/the Hematology Journal website http://www.haematologica.org. | |
Acute undifferentiated leukemia | Acute leukemia that does not express any marker considered specific for either lymphoid or myeloid lineage |
MPAL with BCR::ABL1 (t(9;22)(q34;q11.2)) | Acute leukemia meeting the diagnostic criteria for MPAL in which the blasts also have the (9;22) translocation or the BCR::ABL1 rearrangement |
MPAL with KMT2A (t(v;11q23)) | Acute leukemia meeting the diagnostic criteria for MPAL in which the blasts also have a translocation involving the KMT2A gene |
MPAL, B/myeloid, NOS (B/M MPAL) | Acute leukemia meeting the diagnostic criteria for assignment to both B and myeloid lineage, in which the blasts lack genetic abnormalities involving BCR::ABL1 or KMT2A |
MPAL, T/myeloid, NOS (T/M MPAL) | Acute leukemia meeting the diagnostic criteria for assignment to both T and myeloid lineage, in which the blasts lack genetic abnormalities involving BCR::ABL1 or KMT2A |
MPAL, B/myeloid, NOS—rare types | Acute leukemia meeting the diagnostic criteria for assignment to both B and T lineage |
Other ambiguous lineage leukemias | Natural killer–cell lymphoblastic leukemia/lymphoma |
Lineage | Criteria |
---|---|
aAdapted from Arber et al.[106] | |
bStrong defined as equal to or brighter than the normal B or T cells in the sample. | |
Myeloid lineage | Myeloperoxidase (flow cytometry, immunohistochemistry, or cytochemistry); or monocytic differentiation (at least two of the following: nonspecific esterase cytochemistry, CD11c, CD14, CD64, lysozyme) |
T lineage | Strongb cytoplasmic CD3 (with antibodies to CD3 epsilon chain); or surface CD3 |
B lineage | Strongb CD19 with at least one of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10; or weak CD19 with at least two of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10 |
The classification system for MPAL includes two entities that are defined by their primary molecular alteration: MPAL with BCR::ABL1 translocation and MPAL with KMT2A rearrangement. The genomic alterations associated with the MPAL, B/myeloid, NOS (B/M MPAL) and MPAL, T/myeloid, NOS (T/M MPAL) entities are distinctive, as described below:
Several polymorphisms of genes involved in the metabolism of chemotherapeutic agents have been reported to have prognostic significance in childhood ALL.[195-197]
Patients with variant phenotypes of TPMT (a gene involved in the metabolism of thiopurines such as mercaptopurine) appear to have more favorable outcomes,[198] although such patients may also be at higher risk of developing significant treatment-related toxicities, including myelosuppression, infection, and second malignancies.[199,200] Patients with homozygosity for TPMT variants associated with low enzymatic activity tolerate only very low doses of mercaptopurine (approximately 10% of the standard dose) and are treated with reduced doses of mercaptopurine to avoid excessive toxicity. Patients who are heterozygous for this variant enzyme gene generally tolerate mercaptopurine without serious toxicity, but they do require more frequent dose reductions for hematologic toxicity than do patients who are homozygous for the normal allele.[201,202]
Germline variants in NUDT15 that reduce or abolish activity of this enzyme also lead to diminished tolerance to thiopurines.[201,203] The NUDT15 variants are most common in East Asian and Hispanic patients, and they are rare in European and African patients. Patients homozygous for the risk variants tolerate only very low doses of mercaptopurine, while patients heterozygous for the risk alleles tolerate lower doses than do patients homozygous for the wild-type allele (approximately 25% dose reduction on average), but there is broad overlap in tolerated doses between the two groups.[201,204]
Gene polymorphisms may also affect the expression of proteins that play central roles in the cellular effects of anticancer drugs. As an example, patients who are homozygous for a polymorphism in the promoter region of CEP72 (a centrosomal protein involved in microtubule formation) are at increased risk of vincristine neurotoxicity.[205]
Genome-wide polymorphism analysis has identified specific single nucleotide polymorphisms associated with high end-induction MRD and risk of relapse. Polymorphisms of interleukin-15, as well as genes associated with the metabolism of etoposide and methotrexate, were significantly associated with treatment response in two large cohorts of ALL patients treated on SJCRH and COG protocols.[206] Polymorphic variants involving the reduced folate carrier and methotrexate metabolism have been linked to toxicity and outcome.[207,208] While these associations suggest that individual variations in drug metabolism can affect outcome, few studies have attempted to adjust for these variations. It is unknown whether individualized dose modification on the basis of these findings will improve outcomes.
Children with acute lymphoblastic leukemia (ALL) are usually treated according to risk groups defined by both clinical and laboratory features. The intensity of treatment required for cure varies substantially among subsets of children with ALL. Risk-based treatment assignment is used in children with ALL so that patients with favorable clinical and biological features who are likely to have a very good outcome with modest therapy can be spared more intensive and toxic treatment, while a more aggressive, potentially more toxic therapeutic approach is reserved for patients with a lower probability of long-term survival.[1,2]
Certain ALL study groups, such as the Children’s Oncology Group (COG), use a more- or less-intensive induction regimen based on a subset of pretreatment factors, while other groups give a similar induction regimen to all patients.
Factors used by the COG to determine the intensity of induction include the following:
The NCI risk group classification for B-ALL stratifies risk according to age and white blood cell (WBC) count, as follows:[3]
All study groups modify the intensity of postinduction therapy on the basis of a variety of prognostic factors, including NCI risk group, immunophenotype, early response determinations, and cytogenetics and genomic alterations.[4] Detection of the BCR::ABL1 fusion (i.e., BCR::ABL1-positive ALL) leads to immediate changes in induction therapy, including the addition of a tyrosine kinase inhibitor, such as imatinib or dasatinib.[5]
Risk-based treatment assignment requires the availability of prognostic factors that reliably predict outcome. For children with ALL, a number of factors have demonstrated prognostic value, some of which are described below.[6] Factors affecting prognosis are grouped into the following three categories:
As in any discussion of prognostic factors, the relative order of significance and the interrelationship of the variables are often treatment dependent and require multivariate analysis to determine which factors operate independently as prognostic variables. Because prognostic factors are treatment dependent, improvements in therapy may diminish or abrogate the significance of any of these prognostic factors.
A subset of the prognostic and clinical factors discussed below is used for the initial stratification of children with ALL for treatment assignment. For brief descriptions of the prognostic groupings currently applied in ongoing clinical trials in the United States, see the Prognostic (risk) groups under clinical evaluation section.
For information about important prognostic factors at relapse, see the Prognostic Factors After First Relapse of Childhood ALL section.
Patient and clinical disease characteristics affecting prognosis include the following:
Age at diagnosis has strong prognostic significance in patients with B-ALL, reflecting the different underlying biology of ALL in different age groups.[7] Age at diagnosis is not prognostically relevant in T-ALL.[8]
Infants with ALL have a particularly high risk of treatment failure. Treatment failure is most common in the following groups:
Up to 80% of infants with ALL have a translocation of 11q23 with numerous chromosome partners generating a KMT2A gene rearrangement.[10,12,14,15] The most common rearrangement is KMT2A::AFF1 (t(4;11)(q21;q23)), but KMT2A rearrangements with many other translocation partners are observed. Infants with leukemia and KMT2A rearrangements typically have very high WBC counts and an increased incidence of CNS involvement. Event-free survival (EFS) and overall survival (OS) rates are poor. The 5-year EFS and OS rates are 35% to 40% for infants with KMT2A-rearranged ALL.[10-12]
The frequency of KMT2A gene rearrangements is extremely high in infants younger than 6 months. From 6 months to 1 year, the incidence of KMT2A rearrangements decreases but remains significantly higher than that observed in older children.[10,16] Blasts from infants with KMT2A rearrangements are often CD10 negative and express high levels of FLT3.[10,11,15,17] Conversely, infants whose leukemic cells show a germline KMT2A gene configuration frequently present with CD10-positive precursor-B immunophenotype. These infants have a significantly better outcome than do infants with ALL characterized by KMT2A rearrangements.[10,11,15,18]
Black infants with ALL are significantly less likely to have KMT2A rearrangements than White infants.[16]
A comparison of the landscape of somatic variants in infants and older children with KMT2A-rearranged ALL revealed significant differences between the two groups. This result suggests distinctive age-related biological behaviors for KMT2A-rearranged ALL that may relate to the significantly poorer outcome for infants.[19,20]
For more information about infants with ALL, see the Infants With ALL section.
Young children (aged 1 to <10 years) with B-ALL have a better disease-free survival (DFS) rate than older children, adolescents, and infants.[3,7,21-23] The improved prognosis in young children is at least partly explained by the more frequent occurrence of favorable cytogenetic features in the leukemic blasts, including hyperdiploidy with 51 to 65 chromosomes and/or favorable chromosome trisomies, or the ETV6::RUNX1 fusion (t(12;21)(p13;q22), previously known as the TEL::AML1 translocation).[7,24,25]
In general, the outcome of patients with B-ALL aged 10 years and older is inferior to that of patients aged 1 to younger than 10 years.[26] Patients aged 10 to 15 years fare better than those who are aged 16 to 21 years at diagnosis who were treated with pediatric regimens.[8] However, the outcome for older adolescents has improved significantly over time.[27-29] Five-year survival rates for adolescents aged 15 to 19 years increased from 36% (1975–1984) to 78% (2011–2017).[30-33]
Multiple retrospective studies have established that adolescents aged 16 to 21 years have a better outcome when treated on pediatric versus adult protocols.[34-36] For more information about adolescents with ALL, see the Postinduction Treatment for Specific ALL Subgroups section.
A WBC count of 50,000/µL is generally used as an operational cut point between better and poorer prognosis,[3] although the relationship between WBC count and prognosis is a continuous function rather than a step function. Patients with B-ALL and high WBC counts at diagnosis have an increased risk of treatment failure compared with patients with low initial WBC counts.[37]
The median WBC count at diagnosis is much higher for T-ALL (>50,000/µL) than for B-ALL (<10,000/µL), and there is no consistent effect of WBC count at diagnosis on prognosis for T-ALL.[37-46]
The presence or absence of CNS leukemia at diagnosis has prognostic significance in both patients with B-ALL and T-ALL. Patients who have a nontraumatic diagnostic lumbar puncture may be placed into one of three categories according to the number of WBC/µL and the presence or absence of blasts on cytospin as follows:
Children with B-ALL or T-ALL who present with CNS3 disease at diagnosis are at a higher risk of treatment failure (both within the CNS and systemically) than patients who are classified as CNS1 or CNS2.[47-49] The prognostic implication of CNS2 status at diagnosis may differ between patients with B-ALL and T-ALL. Some studies have reported increased risk of CNS relapse and/or inferior EFS in patients with B-ALL and CNS2 status at diagnosis, compared with patients with CNS1 status,[50,51] while other studies have not.[47,52-54] In an analysis of 2,164 patients with T-ALL treated in two consecutive COG trials, there was no difference in EFS, DFS, or cumulative incidence of relapse between patients with CNS1 and CNS2 status.[49]
A traumatic lumbar puncture (≥10 erythrocytes/µL) that includes blasts at diagnosis has also been associated with increased risk of CNS relapse and overall poorer outcome in some studies,[47,53,55] but not others.[51,52,56] Patients with CNS2, CNS3, or traumatic lumbar puncture have a higher frequency of unfavorable prognostic characteristics than those with CNS1, including significantly higher WBC counts at diagnosis, older age at diagnosis, an increased frequency of the T-ALL phenotype, and KMT2A gene rearrangements.[47,52,53]
Most clinical trial groups have approached the treatment of CNS2 and traumatic lumbar puncture patients by using more intensive therapy, primarily additional doses of intrathecal therapy during induction.[47,57,58]; [52][Level of evidence B4]; [59][Level of evidence A1]
To determine whether a patient with a traumatic lumbar puncture (with blasts) should be treated as CNS3, the COG uses an algorithm relating the WBC and red blood cell counts in the spinal fluid and the peripheral blood.[60]
Overt testicular involvement at the time of diagnosis occurs in approximately 2% of males,[61,62] with a higher frequency in patients with T-ALL than in patients with B-ALL.[62]
In early ALL trials, testicular involvement at diagnosis was an adverse prognostic factor. With more aggressive initial therapy, however, it does not appear to have prognostic significance.[61,62] For example, a European Organization for Research and Treatment of Cancer trial (EORTC-58881) reported no adverse prognostic significance for overt testicular involvement at diagnosis.[62]
The role of radiation therapy for testicular involvement is unclear. A study from St. Jude Children's Research Hospital (SJCRH) suggests that a good outcome can be achieved with aggressive conventional chemotherapy without radiation.[61] The COG has also adopted this strategy for boys with testicular involvement that resolves completely by the end of induction therapy. The COG considers patients with testicular involvement to be high risk regardless of other presenting features, but most other large clinical trial groups in the United States and Europe do not consider testicular disease to be a high-risk feature.
Outcomes in children with Down syndrome and ALL have often been somewhat inferior to outcomes in children without Down syndrome.[63-67] However, in some studies, patients with Down syndrome appeared to fare as well as those without Down syndrome.[68,69] The lower EFS and OS of children with Down syndrome appear to be related to increased frequency of treatment-related mortality, as well as higher rates of induction failure and relapse.[63-66,70,71] The inferior anti-leukemic outcome may be due, in part, to the decreased prevalence of favorable biological features such as ETV6::RUNX1 or hyperdiploidy (51–65 chromosomes) with trisomies of chromosomes 4 and 10 in Down syndrome ALL patients.[70-72]
In some studies, the prognosis for girls with ALL is slightly better than it is for boys with ALL.[79-81] One reason is the occurrence of testicular relapses among boys, but boys also appear to be at increased risk of bone marrow and CNS relapse for reasons that are not well understood.[79-81] While some reports describe outcomes for boys as closely approaching those of girls,[23,57,82] larger clinical trial experiences and national data continue to show somewhat lower survival rates for boys.[22,33,83,84]
Over the last several decades in the United States, survival rates in Black and Hispanic children with ALL have been somewhat lower than those in White children with ALL.[85-88] One study included more than 18,031 patients with B-ALL and 1,892 patients with T-ALL who were aged 0 to 30 years and treated between 2004 and 2019 in COG clinical trials. The race- and ethnicity-based outcome disparities noted in older studies persisted with more contemporary therapy. Race- and ethnicity-based outcome disparities were observed for patients with B-ALL but not for patients with T-ALL. The study also noted a wider disparity in OS versus EFS for patients with B-ALL, suggesting that disparities might be greater in the setting of relapsed disease versus newly diagnosed disease.[89] Multivariable analysis adjusting for disease prognosticators (e.g., age and WBC count, cytogenetic risk group, CNS status) and insurance status substantially attenuated the increased risk of inferior EFS for Hispanic patients. However, the same adjustments did not attenuate the inferior EFS for non-Hispanic Black children.[89]
The following factors associated with race and ethnicity influence survival:
Hispanic and Latino children have a higher frequency of CRLF2 rearrangements and IKZF1 deletions.[90-92] They also have a higher frequency of the IKZF1PLUS profile (IKZF1 deletion plus deletion of CDKN2A, CDKN2B, PAX5, or PAR1 [in the absence of ERG deletion]).[90]
Studies of the impact of obesity on the outcome of ALL have had variable results. In most of these studies, obesity is defined as weight above the 95th percentile for age and height.
In a study of 762 pediatric patients with ALL (aged 2–17 years), the Dutch Childhood Oncology Group found that those who were underweight at diagnosis (defined as BMI standard deviation score < -1.8; 8% of the population) had an almost twofold higher risk of relapse compared with patients who were not underweight (after adjusting for risk group and age), although this did not result in a difference in EFS or OS. Patients with a decrease in BMI during the first 32 weeks of treatment had similar rates of relapse as other patients, but had significantly worse OS, primarily because of poorer salvage rates after relapse.[108]
Leukemic cell characteristics affecting prognosis include the following:
The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia classifies ALL as either B-lymphoblastic leukemia or T-lymphoblastic leukemia, with further subdivisions based on molecular characteristics.[109,110] For more information, see the Diagnosis section.
Either B- or T-lymphoblastic leukemia can coexpress myeloid antigens. These cases need to be distinguished from leukemia of ambiguous lineage.
Before 2008, the WHO classified B-lymphoblastic leukemia as precursor B-lymphoblastic leukemia, and this terminology is still frequently used in the literature of childhood ALL to distinguish it from mature B-cell ALL. Mature B-cell ALL is now termed Burkitt leukemia and requires different treatment than has been given for B-ALL (precursor B-cell ALL).
B-ALL, defined by the expression of CD19, HLA-DR, cytoplasmic CD79a, and other B-cell–associated antigens, accounts for 80% to 85% of childhood ALL. Approximately 90% of B-ALL cases express the CD10 surface antigen (formerly known as common ALL antigen). Absence of CD10 is often associated with KMT2A rearrangements, particularly t(4;11)(q21;q23), and a poor outcome.[10,111] It is not clear whether CD10 negativity has any independent prognostic significance in the absence of a KMT2A gene rearrangement.[112]
The major immunophenotypic subtypes of B-ALL are as follows:
Approximately three-quarters of patients with B-ALL have the common precursor B-cell immunophenotype and have the best prognosis. Patients with favorable cytogenetics almost always show a common precursor B-cell immunophenotype.
Approximately 5% of patients have the pro-B immunophenotype. Pro-B is the most common immunophenotype seen in infants and is often associated with KMT2A gene rearrangements.
The leukemic cells of patients with pre-B ALL contain cytoplasmic Ig, and 25% of patients with pre-B ALL have the t(1;19)(q21;p13) translocation with the TCF3::PBX1 fusion.[113,114]
Approximately 3% of patients have transitional pre-B ALL with expression of surface Ig heavy chain in the absence of Ig light chain expression, MYC gene involvement, and L3 morphology. Patients with this phenotype respond well to therapy used for B-ALL.[115]
Approximately 2% of patients present with mature B-cell leukemia (surface Ig expression, generally with French-American-British criteria L3 morphology and an 8q24 translocation involving MYC), also called Burkitt leukemia. The treatment for mature B-cell ALL is based on therapy for non-Hodgkin lymphoma and is completely different from the treatment for B-ALL. Rare cases of mature B-cell leukemia that lack surface Ig but have L3 morphology with MYC gene translocations should also be treated as mature B-cell leukemia.[115] For more information about the treatment of children with mature B-cell lymphoma/leukemia and Burkitt lymphoma/leukemia, see Childhood Non-Hodgkin Lymphoma Treatment.
A small number of cases of IG::MYC-translocated leukemias with precursor B-cell immunophenotype (e.g., absence of CD20 expression and surface Ig expression) have been reported.[116] These cases presented in both children and adults. Like Burkitt lymphoma/leukemia, they had a male predominance and most patients showed L3 morphology. The cases lacked variants in genes recurrently altered in Burkitt lymphoma (e.g., ID3, CCND3, or MYC), whereas variants in RAS genes (frequently altered in B-ALL) were common. The clinical significance and optimal therapy of IG::MYC–translocated leukemias with precursor B-cell phenotype and molecular characteristics requires further study.
T-ALL is defined by expression of the T-cell–associated antigens (cytoplasmic CD3, with CD7 plus CD2 or CD5) on leukemic blasts. T-ALL is frequently associated with a constellation of clinical features, including the following:[21,39,82]
While not true historically, with appropriately intensive therapy, children with T-ALL now have an outcome approaching that of children with B-ALL.[21,39,42,43,82,117]
There are few commonly accepted prognostic factors for patients with T-ALL. Conflicting data exist regarding the prognostic significance of presenting leukocyte counts in T-ALL.[38-45,118] The presence or absence of a mediastinal mass at diagnosis has no prognostic significance. In patients with a mediastinal mass, the rate of regression of the mass lacks prognostic significance.[119]
Early T-cell precursor (ETP) ALL.
ETP ALL, a distinct subset of childhood T-ALL, was initially defined by identifying T-ALL cases with gene expression profiles highly related to expression profiles for normal early T-cell precursors.[120] The subset of T-ALL cases identified by these analyses represented 13% of all cases, and are characterized by a distinctive immunophenotype (CD1a and CD8 negativity, with weak expression of CD5 and coexpression of stem cell or myeloid markers). Another subgroup of T-ALL, called near-ETP ALL, has a similar immunophenotype as ETP ALL, except with strong CD5 expression. This subtype represents approximately 15% of cases.[46]
Initial reports describing ETP ALL suggested that this subset of patients has a poorer prognosis than other patients with T-ALL.[120-122] In addition, studies have reported that patients with ETP and near-ETP ALL have a slower early response and higher frequency of induction failure.[45,46] However, despite higher rates of end-induction MRD and induction failure in these patients, the ETP and near-ETP subtypes do not appear to be independent predictors of inferior EFS or OS.[46,123] For instance, in a study from the U.K. Medical Research Council, the ETP ALL subgroup of patients had nonsignificantly inferior 5-year EFS rates compared with non-ETP patients (76% vs. 84%).[123] Similarly, in the COG AALL0434 [NCT00408005] trial, neither ETP nor near-ETP status had a statistically significant impact on EFS on multivariable analysis.[46] Based on these results, most ALL treatment groups do not change patient treatment based on ETP status.
Up to one-third of childhood ALL patients have leukemia cells that express myeloid-associated surface antigens. Myeloid-associated antigen expression appears to be associated with specific ALL subgroups, notably those with KMT2A rearrangements, ETV6::RUNX1, and BCR::ABL1.[124-126] Patients with B-ALL who have gene rearrangements involving ZNF384 also commonly show myeloid antigen expression.[127,128] No independent adverse prognostic significance exists for myeloid-surface antigen expression.[124,125]
For information about leukemia of ambiguous lineage, see the 2016 WHO Classification of Acute Leukemias of Ambiguous Lineage section.
For information about B-ALL and T-ALL cytogenetics/genomics and gene polymorphisms in drug metabolic pathways, see the Cytogenetics/Genomics of Childhood ALL section.
The rapidity with which leukemia cells are eliminated after initiation of treatment and the level of residual disease at the end of induction are associated with long-term outcome. Because treatment response is influenced by the drug sensitivity of leukemic cells and host pharmacodynamics and pharmacogenomics,[129] early response has strong prognostic significance. Various ways of evaluating the leukemia cell response to treatment have been used, including the following:
Morphological assessment of residual leukemia in blood or bone marrow is often difficult and is relatively insensitive. Traditionally, a cutoff of 5% blasts in the bone marrow (detected by light microscopy) has been used to determine remission status. This corresponds to a level of 1 in 20 malignant cells. To detect lower levels of leukemic cells in either blood or marrow, specialized techniques are required. Such techniques include polymerase chain reaction (PCR) assays, which determine unique Ig/T-cell receptor gene rearrangements and fusion transcripts produced by chromosome translocations, or flow cytometric assays, which detect leukemia-specific immunophenotypes. With these techniques, detection of as few as 1 leukemia cell in 100,000 normal cells is possible, and MRD at the level of 1 in 10,000 cells (1 × 10-4 or 0.01%) can be detected routinely.[130] Newer techniques involving high-throughput sequencing (HTS) of Ig/T-cell receptor gene rearrangements can increase sensitivity of MRD detection to 1 in 1 million cells (1 × 10-6 or 0.0001%).[131]
Multiple studies have demonstrated that end-induction MRD is an important, independent predictor of outcome in children and adolescents with B-lineage ALL.[132-134] MRD response discriminates outcome in subsets of patients defined by age, leukocyte count, and cytogenetic abnormalities.[135] In general, patients with higher levels of end-induction MRD have a poorer prognosis than do those with lower or undetectable levels.[130,132-134] However, the absolute risk of relapse associated with specific MRD levels varies by genetic subtype. For example, at any given level of detectable end-induction MRD, patients with favorable cytogenetics, such as ETV6::RUNX1 or high hyperdiploidy, have a lower absolute risk of subsequent relapse than do other patients, while patients with high-risk cytogenetics have a higher absolute risk of subsequent relapse than do other patients.[136] This observation may have important implications when MRD is used to develop risk classification plans.
End-induction MRD is used by almost all groups as a factor in determining the intensity of postinduction treatment. Patients found to have higher MRD levels (typically >0.1% to 0.01%) are allocated to more intensive therapies.[130,133,137]; [138][Level of evidence B4]
A study of 619 children with ALL compared the prognostic utility of MRD by flow cytometry with the more sensitive HTS assay. Using an end-induction MRD cut point level of 0.01%, HTS identified approximately 30% more cases as positive (i.e., >0.01%). Patients identified as positive by HTS but negative by flow cytometry had an intermediate prognosis, compared with patients categorized as either positive or negative by both methods. Patients meeting the criteria for standard-risk ALL with undetectable MRD by HTS had an especially good prognosis (5-year EFS rate, 98.1%).[131]
MRD levels obtained 10 to 12 weeks after the start of treatment (end-consolidation) have also been shown to be prognostically important. Patients with high levels of MRD at this time point have a significantly inferior EFS compared with other patients.[134,135,139]
Another study also indicated that MRD at a later time point may be more prognostically significant in T-ALL.[140] In the Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP) ALL-BFM-2000 (NCT00430118) trial, MRD status at day 78 (week 12) was the most important predictor for relapse in patients with T-ALL.[140] Patients with detectable MRD at end-induction who had negative MRD by day 78 generally had a favorable prognosis, similar to that of patients who achieved MRD-negativity at the earlier end-induction time point.[140] In the COG AALL0434 trial, end-consolidation MRD was evaluated in patients with T-ALL who had very high end-induction MRD (>1%). High end-consolidation MRD was associated with a markedly inferior outcome.[46] The COG AALL1231 study confirmed the prognostic significance of end-consolidation marrow MRD for patients with T-ALL.[141]
MRD measurements, in conjunction with other presenting features, have also been used to identify subsets of patients with an extremely low risk of relapse. The COG reported a very favorable prognosis (5-year EFS rate, 97% ± 1%) for patients with precursor B-cell phenotype, NCI standard risk age/leukocyte count, CNS1 status, and favorable cytogenetic abnormalities (either high hyperdiploidy with favorable trisomies or the ETV6::RUNX1 fusion) who had less than 0.01% MRD levels at both day 8 (from peripheral blood) and end-induction (from bone marrow).[133] The excellent outcomes in patients with low MRD at the end of induction were sustained for more than 10 years from diagnosis.[142]
Modifying therapy on the basis of MRD determination has been shown to improve outcome.
Compared with previous trials conducted by the same group, therapy was less intensive for standard-risk patients but more intensive for moderate-risk and high-risk patients. The overall 5-year EFS rate (87%) and OS rate (92%) were superior to the previous Dutch studies.
Patients who have a rapid reduction in leukemia cells to less than 5% in their bone marrow within 7 or 14 days after the initiation of multiagent chemotherapy have a more favorable prognosis than patients who have slower clearance of leukemia cells from the bone marrow.[145] MRD assessments at the end of induction therapy have generally replaced day 7 and day 14 morphological assessments as response to therapy prognostic indicators because the latter lose their prognostic significance in multivariate analysis once MRD is included in the analyses.[133,146]
Patients with a reduction in peripheral blast count to less than 1,000/µL after a 7-day induction prophase with prednisone and one dose of intrathecal methotrexate (a good prednisone response) have a more favorable prognosis than patients whose peripheral blast counts remain above 1,000/µL (a poor prednisone response).[21] Poor prednisone response is observed in fewer than 10% of patients.[21,147] Treatment stratification for protocols of the Berlin-Frankfurt-Münster (BFM) clinical trials group historically were partially based on early response to the 7-day prednisone prophase (administered immediately before the initiation of multiagent remission induction). The current trial being conducted by that group still uses prednisone response to risk-stratify patients with T-ALL but not B-ALL.
Patients with persistent circulating leukemia cells at 7 to 10 days after the initiation of multiagent chemotherapy are at increased risk of relapse, compared with patients who have clearance of peripheral blasts within 1 week of therapy initiation.[148] Rate of clearance of peripheral blasts has been found to be of prognostic significance in both T-cell and B-lineage ALL.[148]
MRD measured in peripheral blood obtained 1 week after the initiation of multiagent induction chemotherapy has also been evaluated as an early response-to-therapy prognostic factor.
Both studies identified a group of patients who achieved low MRD levels after 1 week of multiagent induction therapy who had a low rate of subsequent treatment failure.
Nearly all children with ALL achieve complete morphological remission by the end of the first month of treatment. The presence of greater than 5% lymphoblasts by morphological assessment at the end of the induction phase is observed in 1% to 2% of children with ALL.[22,23,150-152]
Features associated with a higher risk of induction failure include the following:[152-154]
In a large retrospective study, the OS rate of patients with induction failure was only 32%.[150] However, there was significant clinical and biological heterogeneity. A relatively favorable outcome was observed in patients with B-ALL between the ages of 1 and 5 years without adverse cytogenetics (KMT2A rearrangement or BCR::ABL1). This group had a 10-year survival rate exceeding 50%, and hematopoietic stem cell transplant (HSCT) in first remission was not associated with a survival advantage compared with chemotherapy alone for this subset. Patients with the poorest outcomes (10-year survival rate, <20%) included those who were aged 14 to 18 years, or who had the BCR::ABL1 fusion or KMT2A rearrangement. B-ALL patients younger than 6 years and T-ALL patients (regardless of age) appeared to have better outcomes if treated with allogeneic HSCT after achieving CR than those who received further treatment with chemotherapy alone.[150] However, in the COG AALL0434 (NCT00408005) study, an advantage for HSCT in first CR for T-ALL patients with induction failure (defined as M3 marrow at end of induction) was not observed. In this study, T-ALL patients were assigned to receive nelarabine during several postinduction treatment phases and high-dose methotrexate during the first interim maintenance phase. The 5-year EFS rate of these patients was 53.1%, with no significant difference between those who proceeded to HSCT in first CR (n = 20) and those who did not (n = 23) (P = .42).[157]
MRD is now being integrated with morphological assessment into the response to induction therapy, on the basis of studies that showed that patients with MRD levels above 5%, despite morphological CR, had outcomes similar to patients with morphological induction failure.
Outcome | M1/MRD <5% | P valueb | M1/MRD ≥5% | P valuec | M2/MRD ≥5% | |
---|---|---|---|---|---|---|
HR = high risk; MRD = minimal residual disease; SR = standard risk. | ||||||
aAdapted from Gupta et al.[158] | ||||||
bP value is comparing M1/MRD <5% with M1/MRD ≥5%. | ||||||
cP value is comparing M1/MRD ≥5% with M2/MRD ≥5%. | ||||||
Event-free survival rates: | ||||||
B-ALL, overall | 87.1% ± 0.4% (n = 7,682) | <.0001 | 59.1% ± 6.5% (n = 66) | .009 | 39.1% ± 7.9% (n = 40) | |
B-ALL, SR | 90.8% ± 0.4% (n = 5,000) | .25 | 85.9% ± 7.6% (n = 22) | .45 | 76.2% ± 15.2% (n = 9) | |
B-ALL, HR | 80% ± 0.9% (n = 2,682) | <.0001 | 44.9% ± 8.3% (n = 44) | .05 | 29% ± 8.2% (n = 31) | |
T-ALL | 87.6% ± 1.5% (n = 1,303) | .01 | 80.3% ± 7.3% (n = 97) | .13 | 62.7% ± 13.5% (n = 40) | |
Overall survival rates: | ||||||
B-ALL, overall | 93.8% ± 0.3% (n = 7,682) | <.0001 | 77.2% ± 5.6% (n = 66) | .01 | 59% ± 8.9% (n = 40) | |
B-ALL, SR | 96.6% ± 0.3% (n = 5,000) | .24 | 95.5% ± 4.6% (n = 22 ) | .75 | 88.9% ± 12.1% (n = 9) | |
B-ALL, HR | 88.4% ± 0.7% (n = 2,682) | <.0001 | 66.9% ± 8.3% (n = 44) | .06 | 51.4% ± 10.4% (n = 31) | |
T-ALL | 91.9% ± 1.3% (n = 1,303) | .005 | 83.4% ± 6.8% (n = 97) | .34 | 76.7% ± 12.3% (n = 40) |
For decades, clinical trial groups studying childhood ALL have used risk classification schemes to assign patients to therapeutic regimens on the basis of their estimated risk of treatment failure. Initial risk classification systems used clinical factors such as age and presenting WBC count. Response-to-therapy measures were subsequently added, with some groups using early morphological bone marrow response (e.g., at day 8 or day 15) and with other groups using response of circulating leukemia cells to single-agent prednisone. Contemporary risk classification systems continue to use clinical factors such as age and presenting WBC count and incorporate cytogenetics and genomic lesions of leukemia cells at diagnosis (e.g., favorable and unfavorable translocations) and response to therapy based on detection of MRD at end of induction (and in some cases at later time points).[140] The risk classification systems of the COG and the BFM groups are briefly described below.
In COG protocols, children with ALL are initially stratified into treatment groups (with varying degrees of risk of treatment failure) on the basis of a subset of prognostic factors, including the following:
EFS rates exceed 85% in children meeting good-risk criteria (aged 1 to <10 years, WBC count <50,000/μL, and precursor B-cell immunophenotype). In children meeting high-risk criteria, EFS rates are approximately 75%.[4,57,147,159,160] Additional factors, including cytogenetic abnormalities and measures of early response to therapy (e.g., MRD levels in peripheral blood on day 8 and in bone marrow samples at the end of induction), considered in conjunction with presenting age, WBC count, immunophenotype, the presence of extramedullary disease, and steroid pretreatment can identify patient groups for postinduction therapy with expected EFS rates ranging from less than 40% to more than 95%.[4,133]
Patients who are at very high risk of treatment failure include the following:[161-164]
Since 2000, risk stratification on BFM protocols has been based on treatment response criteria, as well as biology. Treatment response is assessed primarily via MRD measurements at two time points, end-induction (time point 1, week 5) and end of the IB phase (similar to COG consolidation phase) at week 12 (time point 2). High MRD at both time points is defined as higher than 5 × 10-4.
The BFM defines 3 risk groups based on early response:[135]
Biological factors used to stratify patients as high risk (regardless of MRD at either time point) include KMT2A::AFF1, TCF3::HLF, and hypodiploidy (<45 chromosomes). Patients with IKZF1-plus status (IKZF1 deletions that co-occurred with deletions in CDKN2A, CDKN2B, PAX5, or PAR1 in the absence of ERG deletion) [165] are considered high risk if they have high MRD at end-induction, regardless of end-consolidation MRD. Age, presenting leukocyte count, and CNS status at diagnosis do not factor into the current risk classification schema.
Morphological assessment of early response in the bone marrow is no longer performed on days 8 and 15 of induction as part of risk stratification. Patients with T-cell phenotype are treated on separate trials and are not risk classified in this way.
For patients with B-ALL, the definitions of favorable, unfavorable, and neutral cytogenetics are as follows:
NCI standard-risk patients are divided into a highly favorable group (standard-risk favorable; 5-year DFS rate, >95%), a group with favorable outcome (standard-risk average; 5-year DFS rate, 90%–95%), and a group with a 5-year DFS rate below 90% (standard-risk high). Patients classified as standard-risk high receive postinduction backbone chemotherapy as per high-risk B-ALL regimens with intensified consolidation, interim maintenance, and reinduction therapy. Criteria for these three groups are provided in Table 6, Table 7, and Table 8 below.
NCI Risk Group | CNS Stage | Steroid Pretreatmenta | Favorable Genetics (ETV6::RUNX1 or DT) | PB MRD Day 8 | BM MRD Day 29 |
---|---|---|---|---|---|
BM = bone marrow; CNS = central nervous system; DT = double trisomy; MRD = minimal residual disease; NCI = National Cancer Institute; PB = peripheral blood; SR = standard risk. | |||||
aWithin one month prior to diagnosis. | |||||
SR | 1, 2 | None | Yes | <1% | <0.01% |
NCI Risk Group | CNS Stage | ETV6::RUNX1 | DT | Neutral Cytogenetics | PB MRD Day 8 | BM MRD Day 29 |
---|---|---|---|---|---|---|
BM = bone marrow; CNS = central nervous system; DT = double trisomy; MRD = minimal residual disease; NCI = National Cancer Institute; PB = peripheral blood; SR = standard risk. | ||||||
SR | 1, 2 | Yes to either | No | ≥1% | <0.01% | |
SR | 1, 2 | No | Yes | No | Any | ≥0.01 to <0.1% |
SR | 1 | No | No | Yes | Any | <0.01% |
NCI Risk Group | CNS Stage | ETV6::RUNX1 | DT | Neutral Cytogenetics | Unfavorable Cytogenetics | PB MRD Day 8 | BM MRD Day 29 |
---|---|---|---|---|---|---|---|
BM = bone marrow; CNS = central nervous system; DT = double trisomy; MRD = minimal residual disease; NCI = National Cancer Institute; PB = peripheral blood; SR = standard risk. | |||||||
SR | 1, 2 | Yes | No | No | No | Any | ≥0.01% |
SR | 1, 2 | No | Yes | No | No | Any | ≥0.1% |
SR | 1 | No | No | Yes | No | Any | ≥0.01% |
SR | 2 | No | No | Yes | No | Any | Any |
SR | 1, 2 | No | No | No | Yes | Any | Any |
High-risk favorable B-ALL is defined by the characteristics in Table 9. These patients have an EFS rate higher than 90% on past COG clinical trials for high-risk patients.
NCI Risk Group | Age (y) | CNS Status | Testicular Leukemia | Steroid Pretreatment | Favorable Genetics (ETV6::RUNX1 or DT) | Bone marrow MRD EOI |
---|---|---|---|---|---|---|
HR | <10 | 1 | None | ≤24 hoursa | Yes | <0.01% |
CNS = central nervous system; DT = double trisomy; EOI = end of induction; HR = high risk; MRD = minimal residual disease; NCI = National Cancer Institute. | ||||||
aWithin two weeks of diagnosis. |
High-risk B-ALL is defined by the characteristics in Table 10. NCI standard-risk patients are elevated to high-risk status based on steroid pretreatment and CNS and/or testicular involvement.
NCI Risk Group | Age (y) | CNS and/or Testicular Leukemia | Steroid Pretreatment | Cytogenetics | Bone marrow MRD EOI | Bone marrow MRD EOC |
---|---|---|---|---|---|---|
CNS = central nervous system; EOC = end of consolidation; EOI = end of induction; HR = high risk; MRD = minimal residual disease; N/A = not applicable; NCI = National Cancer Institute; SR = standard risk. | ||||||
aCNS3. | ||||||
bPhiladelphia chromosome–positive (Ph+) ALL is excluded. | ||||||
cOnly subjects with EOI bone marrow MRD ≥0.01% will have a bone marrow MRD assessment at EOC. | ||||||
dWithin 2 weeks of diagnosis. | ||||||
eCNS2 or CNS3. | ||||||
SR | <10 | Yesa | Any | Anyb | Any | <1%c |
SR | <10 | No | >24 hoursd | Anyb | Any | <1%c |
HR | ≥10 | Any | Any | Anyb | <0.01% | N/A |
HR | <10 | Yese | Any | Anyb | <0.01% | N/A |
HR | <10 | No | >24 hoursd | Anyb | <0.01% | N/A |
HR | <10 | No | ≤24 hoursd | Neutral/unfavorableb | <0.01% | N/A |
HR | Any | Any | Any | Anyb | ≥0.01% | <0.01% |
NCI high-risk patients with end-of-consolidation marrow MRD ≥0.01% are classified as very high risk and are eligible for a chimeric antigen receptor (CAR) T-cell clinical trial in first remission (NCT03792633).
Patients with B-ALL and Down syndrome are classified into risk groups similar to other children, but Down syndrome patients classified as high risk receive a treatment regimen that is modified to reduce toxicity.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
Treatment for children with acute lymphoblastic leukemia (ALL) is typically divided into the following phases:
Historically, certain extramedullary sites have been considered sanctuary sites (i.e., anatomic spaces that are poorly penetrated by many of the orally and intravenously administered chemotherapy agents typically used to treat ALL). The two most important sanctuary sites in childhood ALL are the central nervous system (CNS) and the testes. Successful treatment of ALL requires therapy that effectively addresses clinical or subclinical involvement of leukemia in these extramedullary sanctuary sites.
At diagnosis, approximately 3% of patients have CNS3 disease (defined as cerebrospinal fluid specimen with ≥5 white blood cells/μL with lymphoblasts and/or the presence of cranial nerve palsies). However, unless specific therapy is directed toward the CNS, most children will eventually develop overt CNS leukemia whether or not lymphoblasts were detected in the spinal fluid at initial diagnosis. CNS-directed treatments include intrathecal chemotherapy, CNS-directed systemic chemotherapy, and cranial radiation. Some or all of these treatments are included in current regimens for ALL. For more information, see the CNS-Directed Therapy for Childhood ALL section.
Overt testicular involvement at the time of diagnosis occurs in approximately 2% of males. In early ALL trials, testicular involvement at diagnosis was an adverse prognostic factor. With more aggressive initial therapy, however, the prognostic significance of initial testicular involvement is unclear.[1,2] The role of radiation therapy for testicular involvement is also unclear. A study from St. Jude Children's Research Hospital suggests that a good outcome can be achieved with aggressive conventional chemotherapy without radiation.[1] The Children's Oncology Group has also adopted this strategy for boys with testicular involvement that resolves completely during induction chemotherapy.
The treatment of children and adolescents with acute lymphoblastic leukemia (ALL) entails complicated risk assignment, extensive therapies, and intensive supportive care (e.g., transfusions; management of infectious complications; and emotional, financial, and developmental support). Because of these factors, the evaluation and treatment of these patients are best coordinated by a multidisciplinary team in cancer centers or hospitals with all of the necessary pediatric supportive care facilities.[1] This multidisciplinary team approach incorporates the skills of the following pediatric specialists and others to ensure that children receive treatment, supportive care, and rehabilitation to achieve optimal survival and quality of life:
For specific information about supportive care for children and adolescents with cancer, see the summaries on Supportive and Palliative Care.
The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[1] Treatment of childhood ALL typically involves chemotherapy given for 2 to 3 years. Because myelosuppression and generalized immunosuppression are anticipated consequences of leukemia and chemotherapy treatment, adequate facilities must be immediately available for both hematological support and treatment of infections and other complications throughout all phases of therapy. Approximately 1% to 3% of patients die during the remission induction phase, and another 1% to 3% die after having achieved complete remission from treatment-related complications.[2-6] It is important that the clinical centers and the specialists directing the patient’s care maintain contact with the referring physician in the community. Strong lines of communication optimize any urgent or interim care required when the child is at home.
Clinical trials are generally available for children with ALL, with specific protocols designed for children at standard (low) risk of treatment failure and for children at higher risk of treatment failure. Clinical trials for children with ALL are generally designed to compare standard therapy for a particular risk group with a potentially better treatment approach that may improve survival and/or diminish toxicities associated with the standard treatment regimen. Other types of clinical trials test novel therapies when there is no standard therapy for a cancer diagnosis. Many of the therapeutic innovations that produced increased survival rates in children with ALL were achieved through clinical trials, and it is appropriate for children and adolescents with ALL to be offered participation in a clinical trial. Information about ongoing clinical trials is available from the NCI website.
Risk-based treatment assignment is an important therapeutic strategy for children with ALL. This approach allows children who historically have a very good outcome to be treated with less intensive therapy and to be spared more toxic treatments, while children with a historically lower probability of long-term survival receive more intensive therapy that may increase their chance of cure. For more information about clinical and laboratory features that have shown prognostic value, see the Risk-Based Treatment Assignment section.
Standard treatment options for newly diagnosed childhood acute lymphoblastic leukemia (ALL) include the following:
The goal of the first phase of therapy (remission induction) is to induce a complete remission (CR). This induction phase typically lasts 4 weeks. Overall, approximately 98% of patients with newly diagnosed B-ALL achieve CR by the end of this phase, with somewhat lower rates in infants and in noninfant patients with T-ALL or high presenting leukocyte counts.[1-5]
Induction chemotherapy typically consists of the following drugs, with or without an anthracycline (either doxorubicin or daunorubicin):
The Children's Oncology Group (COG) protocols administer a three-drug induction (vincristine, corticosteroid, and pegaspargase) to National Cancer Institute (NCI) standard-risk B-ALL patients and a four-drug induction (vincristine, corticosteroid, and pegaspargase plus anthracycline) to NCI high-risk B-ALL and all T-ALL patients. Other groups use a four-drug induction for all patients.[1-3]
Many current regimens use dexamethasone instead of prednisone during remission induction and later phases of therapy, although controversy exists as to whether dexamethasone benefits all subsets of patients. Some trials also suggest that dexamethasone during induction may be associated with more toxicity than prednisone, including higher rates of infection, myopathy, and behavioral changes.[1,6-8] The COG reported that dexamethasone during induction was associated with a higher risk of osteonecrosis in older children (aged >10 years),[8] although this finding has not been confirmed in other randomized studies.[1,7]
Evidence (dexamethasone vs. prednisone during induction):
The ratio of dexamethasone to prednisone dose used may influence outcome. Studies in which the dexamethasone to prednisone ratio was 1:5 to 1:7 have shown a better result for dexamethasone, while studies that used a 1:10 ratio have shown similar outcomes.[10]
Several forms of asparaginase have been used in the treatment of children with ALL, including the following:
Pegaspargase is a form of L-asparaginase in which the E. coli–derived enzyme is modified by the covalent attachment of polyethylene glycol. It is commonly used during both induction and postinduction phases of treatment in newly diagnosed patients treated in Western Europe. Pegaspargase is not available in the United States, but it is still available in other countries.
Pegaspargase may be given either intramuscularly (IM) or intravenously (IV).[11] Pharmacokinetics and toxicity profiles are similar for IM and IV pegaspargase administration.[11] There is no evidence that IV administration of pegaspargase is more toxic than IM administration.[11-13]
Pegaspargase has a much longer serum half-life than native E. coli L-asparaginase, producing prolonged asparagine depletion after a single injection.[14]
Serum asparaginase enzyme activity levels of more than 0.1 IU/mL have been associated with serum asparagine depletion. Studies have shown that a single dose of pegaspargase given either IM or IV as part of multiagent induction results in serum enzyme activity of more than 0.1 IU/mL in nearly all patients for at least 2 to 3 weeks.[11,12,15,16] In one study of 54 NCI high-risk patients conducted by the COG, plasma asparaginase activity as low as 0.02 IU/mL was associated with serum asparagine depletion. Using that cutoff value, it was estimated that 96% of patients maintained the therapeutic effect (plasma asparagine depletion) for 22 to 29 days after a single pegaspargase dose of 2,500 IU/m2.[17] In one randomized study, higher doses of pegaspargase (3,500 IU/m2) did not improve outcome when compared with standard doses (2,500 IU/m2).[18][Level of evidence A1]
In another study, doses of pegaspargase were reduced in an attempt to decrease toxicity.[19] While lower doses were successful in maintaining appropriate asparaginase levels of more than 0.1 IU/mL, the frequency of asparaginase-related toxicities was similar to the frequency of toxicities reported in previous studies that used higher doses of pegaspargase. This study did not report on the impact of lower doses of pegaspargase on EFS.
Evidence (use of pegaspargase versus native E. coli L-asparaginase):
Patients with an allergic reaction to pegaspargase are typically switched to Erwinia L-asparaginase. A COG analysis investigated the deleterious effect on disease-free survival (DFS) of early discontinuation of treatment with pegaspargase in patients with high-risk B-ALL. The study found that the adverse effect on outcome could be reversed with the use of Erwinia L-asparaginase to complete the planned course of asparaginase therapy.[20][Level of evidence C2] Measurement of SAA levels after a mild or questionable reaction to pegaspargase may help to differentiate patients for whom the switch to Erwinia is indicated (because of inadequate SAA) versus those for whom a change in preparation may not be necessary.[21,22]
Evidence (adverse prognostic impact of early discontinuation of pegaspargase or silent inactivation of asparaginase):
Determination of the optimal frequency of pharmacokinetic monitoring for pegaspargase-treated patients, and whether such screening impacts outcome, awaits further investigation.
In an attempt to decrease hypersensitivity reactions to pegaspargase, the Dutch Childhood Oncology Group-ALL11 protocol randomly assigned patients to receive either continuous or noncontinuous dosing after induction therapy. The occurrence of inactivating hypersensitivity reactions was seven times lower and antibody levels were significantly lower in the continuous-dosing arm. There was no difference in total number of asparaginase toxicities or the 5-year incidences of relapse, death, or disease-free survival between the treatment arms.[26]
Calaspargase pegol is another formulation of pegylated asparaginase that is also available for the treatment of children and adolescents with ALL.[27] This formulation is similar in structure to pegaspargase, except with a different linker between the L-asparaginase enzyme and the PEG moiety, resulting in a longer half-life.[28,29]
Evidence (calaspargase pegol vs. pegaspargase):
Calaspargase pegol has only been approved for use in the United States for patients younger than 22 years.
Erwinia L-asparaginase is typically used in patients who have experienced an allergy to native E. coli or pegaspargase.
The half-life of Erwinia L-asparaginase (0.65 days) is much shorter than that of native E. coli (1.2 days) or pegaspargase (5.7 days).[14] If Erwinia L-asparaginase is used, the shorter half-life of the Erwinia preparation requires more frequent administration to achieve adequate asparagine depletion.
Evidence (increased dose frequency of Erwinia L-asparaginase needed to achieve goal therapeutic effect):
A recombinant form of Erwinia L-asparaginase, asparaginase erwinia chrysanthemi (recombinant)-rywn, was studied in a phase II/III COG trial. When it was given on a Monday (25 mg/m2), Wednesday (25 mg/m2), and Friday (50 mg/m2) schedule for six doses, the proportion of patients who achieved asparaginase levels of 0.1 IU/mL or greater was 90% at 72 hours (44 of 49 patients) and 96% at 48 hours (47 of 49 patients). The safety profile was comparable with other forms of asparaginase.[32] In 2022, the U.S. Food and Drug Administration approved asparaginase erwinia chrysanthemi (recombinant)-rywn for IM use in children and adults with ALL on the Monday, Wednesday, and Friday schedule used in the COG trial.
The COG protocols administer a three-drug induction (vincristine, corticosteroid, and pegaspargase) to NCI standard-risk B-ALL patients and a four-drug induction (vincristine, corticosteroid, and pegaspargase plus an anthracycline) to NCI high-risk B-ALL and all T-ALL patients. Other groups use a four-drug induction for all patients.[1-3]
In induction regimens that include an anthracycline, either daunorubicin or doxorubicin are typically used. In a randomized trial comparing the two agents during induction, there were no differences in early response measures, including reduction in peripheral blood blast counts during the first week of therapy, day 15 marrow morphology, and end-induction MRD levels.[33][Level of evidence B3]
More than 95% of children with newly diagnosed ALL will achieve a CR within the first 4 weeks of treatment. Of those who fail to achieve CR within the first 4 weeks, approximately one-half will experience a toxic death during the induction phase (usually caused by infection) and the other half will have resistant disease (persistent morphological leukemia).[34-36]; [37][Level of evidence C1]
Remission is classically defined as an end-induction bone marrow examination by routine microscopic cytomorphology with fewer than 5% lymphoblasts at the end of induction (M1). The Ponte de Legno consortium includes approximately 15 large national and international cooperative groups devoted to the study and treatment of childhood ALL. This group published a consensus definition of complete remission, as follows:[38]
Most patients with persistence of morphologically detectable leukemia at the end of the 4-week induction phase have a poor prognosis and may benefit from an allogeneic hematopoietic stem cell transplant (HSCT) once CR is achieved.[4,39,40] In a retrospective study of 1,041 patients with persistent disease after induction therapy (induction failure) who were treated between 1985 and 2000, the 10-year OS rate was 32%.[41] A trend for superior outcome with allogeneic HSCT compared with chemotherapy alone was observed in patients with T-cell phenotype (any age) and B-ALL patients older than 6 years. B-ALL patients who were aged 1 to 5 years at diagnosis and did not have any adverse cytogenetic abnormalities (KMT2A rearrangement, BCR::ABL1) had a relatively favorable prognosis, without any advantage in outcome with the utilization of HSCT compared with chemotherapy alone.[41]
A follow-up retrospective study reported the outcomes of 325 children and adolescents with T-ALL and initial induction failure who were treated between 2000 and 2018.[42] The 10-year OS rate was 54.7%, which was significantly better than the rates of patients in historical cohorts who were treated between 1985 and 2000 (10-year OS rate, 27.6%). Complete remission was eventually achieved in 93% of patients with T-ALL and initial induction failure. Of the patients who achieved complete remission, 72% underwent HSCT. Adjusting for time to transplant, the 10-year OS rate was 66.2% for these patients, compared with 50.8% for those who did not undergo transplants.
The incorporation of nelarabine may be of value for patients with T-ALL and have induction failure. The COG AALL0434 (NCT00408005) study included 43 patients with more than 25% blasts in an end-induction bone marrow aspirate. Of these patients, 23 patients were nonrandomly assigned to therapy that included high-dose methotrexate and nelarabine as part of a multidrug regimen, and 20 patients underwent allogeneic transplant. The 5-year EFS rate was 53.1% (± 9.4%) for the patients who received high-dose methotrexate and nelarabine. There was no difference in outcome for these two groups (HR, 0.66; 95% CI, 0.24–1.83; P = .423).[43]
For patients who achieve CR, measures of the rapidity of blast clearance and MRD determinations have important prognostic significance, particularly the following:
For more information, see the Response to initial treatment section.
For specific information about CNS therapy to prevent CNS relapse in children with newly diagnosed ALL, see the CNS-Directed Therapy for Childhood ALL section.
Standard treatment options for consolidation/intensification and maintenance therapy (postinduction therapy) include the following:
CNS-directed therapy is provided during premaintenance chemotherapy by all groups. Some protocols (COG, St. Jude Children's Research Hospital [SJCRH], and DFCI) provide ongoing intrathecal chemotherapy during maintenance, while others (Berlin-Frankfurt-Münster [BFM]) do not. For specific information about CNS therapy to prevent CNS relapse in children with acute lymphoblastic leukemia (ALL) who are receiving postinduction therapy, see the CNS-Directed Therapy for Childhood ALL section.
Once CR has been achieved, systemic treatment in conjunction with CNS-directed therapy follows. The intensity of the postinduction chemotherapy varies considerably depending on risk group assignment, but all patients receive some form of intensification after the achievement of CR and before beginning maintenance therapy.
The most commonly used intensification schema is the BFM backbone. This therapeutic backbone, first introduced by the BFM clinical trials group, includes the following:[1]
An interim maintenance phase, which includes intrathecal therapy and four doses of high-dose methotrexate (typically 5 g/m2) with leucovorin rescue.
This backbone has been adopted by many groups, including the COG. Variation of this backbone includes the following:
Other clinical trial groups utilize a different therapeutic backbone during postinduction treatment phases, as follows:
In children with low- and standard-risk B-ALL, there has been an attempt to limit exposure to drugs such as anthracyclines and alkylating agents that may be associated with an increased risk of late toxic effects.[60-62] The COG regimen for standard-risk B-ALL postinduction therapy can be delivered in the outpatient setting and has multiple favorable characteristics, including low-intensity 4-week consolidation, limited anthracycline (75 mg/m2) and alkylator exposure (1 gm/m2), only two doses of pegaspargase, and interim maintenance phases consisting of escalating doses of methotrexate (without leucovorin rescue) rather than high-dose IV methotrexate.[63][Level of evidence B4]
Favorable outcomes for standard-risk patients with B-ALL were also reported in trials that used a limited number of courses of intermediate-dose or high-dose methotrexate as consolidation followed by maintenance therapy (without a reinduction phase).[61,64,65] More specifically, a subset of patients with standard-risk B-ALL with favorable cytogenetics, no evidence of CNS or testicular disease at diagnosis, and rapid achievement of low levels of MRD, have been treated with exposure to no or low doses of anthracyclines and alkylating agents. The 5-year DFS rate was almost 99%, and the OS rate was 100%.[66] The DFCI ALL Consortium study used multiple doses of pegaspargase (30 weeks) as consolidation, without postinduction exposure to alkylating agents or anthracyclines.[67,68]
However, the prognostic impact of end-induction and/or consolidation MRD has influenced the treatment of patients originally diagnosed as NCI standard risk. Multiple studies have demonstrated that higher levels of end-induction MRD are associated with poorer prognosis.[45,47,48,69,70] Augmenting therapy has been shown to improve the outcome in standard-risk patients with elevated MRD levels at the end of induction.[51] Patients with NCI standard-risk B-ALL with high-risk features (including increased end-of-induction MRD levels as well as CNS2 status at diagnosis, and/or unfavorable genetics) are treated with more intensified therapy. For more information, see the Prognostic (risk) groups under clinical evaluation section.
Evidence (intensification for standard-risk B-ALL):
In high-risk patients, a number of different approaches have been used with comparable efficacy.[67,81]; [74][Level of evidence B4] Treatment for high-risk patients is generally more intensive than that for standard-risk patients and typically includes higher cumulative doses of multiple agents, including anthracyclines and/or alkylating agents. Higher doses of these agents increase the risk of both short-term and long-term toxicities, and many clinical trials have focused on reducing the side effects of these intensified regimens.
Evidence (intensification for high-risk ALL):
Because treatment for high-risk ALL involves more intensive therapy, leading to a higher risk of acute and long-term toxicities, a number of clinical trials have tested interventions to prevent side effects without adversely impacting EFS. Interventions that have been investigated include the use of the cardioprotectant dexrazoxane to prevent anthracycline-related cardiac toxic effects and alternative scheduling of corticosteroids to reduce the risk of osteonecrosis.
Evidence (cardioprotective effect of dexrazoxane):
Evidence (reducing risk of osteonecrosis):
For more information, see the Osteonecrosis section.
Approximately 10% to 20% of patients with ALL are classified as very high risk, including the following:[74,90]
Patients with very high-risk features have been treated with multiple cycles of intensive chemotherapy during the consolidation phase (usually in addition to the typical BFM backbone intensification phases). These additional cycles often include agents not typically used in frontline ALL regimens for standard-risk and high-risk patients, such as high-dose cytarabine, ifosfamide, and etoposide.[74] However, even with this intensified approach, reported long-term EFS rates range from 30% to 50% for some of these very high-risk subsets.[39,74] The DCOG reported the outcomes of 107 patients with very high-risk features who were treated with three to six intensive chemotherapy blocks in two consecutive trials. Sixty of these patients received an allogeneic HSCT in first CR. The 5-year EFS rate was 73%, and the OS rate was 79% for all patients. With this intensified treatment approach, the cumulative incidence of treatment-related mortality was 12.3%, which was similar to the cumulative incidence of relapse, at 13%.[91]
On some clinical trials, very high-risk patients have also been considered candidates for allogeneic HSCT in first CR.[39,92-94] However, there are limited data regarding the outcome of very high-risk patients treated with allogeneic HSCT in first CR. Controversy exists regarding which subpopulations could potentially benefit from HSCT.
Evidence (allogeneic HSCT in first remission for very high-risk patients):
The backbone of maintenance therapy in most protocols includes daily oral mercaptopurine and weekly oral or parenteral methotrexate. On many protocols, intrathecal chemotherapy for CNS sanctuary therapy is continued during maintenance therapy. Also, vincristine/steroid pulses during maintenance are used by some groups but not others (see below). It is imperative to carefully monitor children on maintenance therapy for both drug-related toxicity and for compliance with the oral chemotherapy agents used during maintenance therapy.[99] A protocol conducted by the COG suggested there are significant differences in compliance with oral mercaptopurine regimens among various racial and socioeconomic groups and that level of adherence impacts relapse risk.[99,100]
In the past, clinical practice generally called for the administration of oral mercaptopurine in the evening, on the basis of evidence from older studies that this practice may improve EFS.[101] However, in a study conducted by the NOPHO group, in which details of oral intake were prospectively captured, timing of mercaptopurine administration (nighttime vs. other times of day) was not of prognostic significance.[102] In a COG study, taking mercaptopurine at varying times of day rather than consistently at nighttime was associated with higher rates of nonadherence. However, among adherent patients (i.e., those who took >95% of prescribed doses), there was no association between timing of mercaptopurine ingestion and relapse risk.[103]
Some patients may develop severe hematologic toxicity when receiving conventional dosages of mercaptopurine because of an inherited deficiency (homozygous mutant) of thiopurine S-methyltransferase, an enzyme that inactivates mercaptopurine.[104,105] These patients are able to tolerate mercaptopurine only in much lower dosages than those conventionally used.[104,105] Patients who are heterozygous for the variant generally tolerate mercaptopurine without serious toxicity, but they do require more frequent dose reductions for hematologic toxicity than do patients who are homozygous for the normal allele.[104] Polymorphisms of the NUDT15 gene, observed most frequently in East Asian and Hispanic patients, have also been linked to extreme sensitivity to the myelosuppressive effects of mercaptopurine.[106-108]
Evidence (maintenance therapy):
On the basis of these findings, SJCRH modified the agents used in the rotating pair schedule during the maintenance phase. On the Total XV study, standard-risk and high-risk patients received three rotating pairs (mercaptopurine plus methotrexate, cyclophosphamide plus cytarabine, and dexamethasone plus vincristine) throughout this treatment phase. Low-risk patients received more standard maintenance (without cyclophosphamide and cytarabine).[59]
Pulses of vincristine and corticosteroid are often added to the standard maintenance backbone, although the benefit of these pulses within the context of contemporary multiagent chemotherapy regimens remains controversial.
Evidence (vincristine/corticosteroid pulses):
For regimens that include vincristine/steroid pulses, a number of studies have addressed which steroid (dexamethasone or prednisone) should be used. From these studies, it appears that dexamethasone is associated with superior EFS, but also may lead to a greater frequency of steroid-associated complications, including bone toxicity and infections, especially in older children and adolescents.[6,7,24,71,126] Compared with prednisone, dexamethasone has also been associated with a higher frequency of behavioral problems.[7] In a randomized study of 50 patients aged 3 to 16 years who received maintenance chemotherapy, concurrent administration of hydrocortisone (at physiological dosing) during dexamethasone pulses reduced the frequency of behavioral difficulties, emotional lability, and sleep disturbances.[127]
Evidence (dexamethasone vs. prednisone):
The benefit of using dexamethasone in children aged 10 to 18 years requires further investigation because of the increased risk of steroid-induced osteonecrosis in this age group.[82,126]
Maintenance chemotherapy generally continues for 2 to 3 years of continuous CR. On some studies, boys are treated longer than girls.[71] In other trials, there is no difference in the duration of treatment based on sex.[67,74] It is not clear whether longer duration of maintenance therapy reduces relapse in boys, especially in the context of current therapies.[74][Level of evidence B4] Extending the duration of maintenance therapy beyond 3 years does not improve outcome.[120]
Nonadherence to treatment with mercaptopurine during maintenance therapy is associated with a significant risk of relapse.[99] A risk model has been developed to predict which patients have a high risk of nonadherence.[128]
Evidence (adherence to treatment):
Risk-based treatment assignment is a key therapeutic strategy utilized for children with ALL, and protocols are designed for specific patient populations that have varying degrees of risk of treatment failure. The Risk-Based Treatment Assignment section of this summary describes the clinical and laboratory features used for the initial stratification of children with ALL into risk-based treatment groups.
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
At diagnosis, approximately 3% of patients have CNS3 disease (defined as cerebrospinal fluid [CSF] specimen with ≥5 white blood cells [WBC]/μL with lymphoblasts and/or the presence of cranial nerve palsies). However, unless specific therapy is directed toward the CNS, most children will eventually develop overt CNS leukemia whether or not lymphoblasts were detected in the spinal fluid at initial diagnosis. Therefore, all children with acute lymphoblastic leukemia (ALL) should receive systemic combination chemotherapy together with some form of CNS prophylaxis.
Because the CNS is a sanctuary site (i.e., an anatomical space that is poorly penetrated by many of the systemically administered chemotherapy agents typically used to treat ALL), specific CNS-directed therapies must be instituted early in treatment to eliminate clinically evident CNS disease at diagnosis and to prevent CNS relapse in all patients. Historically, survival rates for children with ALL improved dramatically after CNS-directed therapies were added to treatment regimens.
Standard treatment options for CNS-directed therapy include the following:
All of these treatment modalities have a role in the treatment and prevention of CNS leukemia. The combination of intrathecal chemotherapy plus CNS-directed systemic chemotherapy is standard. Cranial radiation is reserved for select situations.[1]
The type of CNS-therapy that is used is based on a patient’s risk of CNS-relapse, with higher-risk patients receiving more intensive treatments. Data suggest that the following groups of patients are at increased risk of CNS relapse:
CNS-directed treatment regimens for newly diagnosed childhood ALL are presented in Table 11.
Disease Status | Standard Treatment Options | |
---|---|---|
ALL = acute lymphoblastic leukemia; CNS = central nervous system; CNS3 = cerebrospinal fluid with ≥5 white blood cells/µL, cytospin positive for blasts, or cranial nerve palsies. | ||
aThe drug itself is not CNS-penetrant, but leads to cerebrospinal fluid asparagine depletion. | ||
Standard-risk ALL | Intrathecal chemotherapy | |
Methotrexate alone | ||
Methotrexate with cytarabine and hydrocortisone | ||
CNS-directed systemic chemotherapy | ||
Dexamethasone | ||
L-asparaginasea | ||
High-dose methotrexate with leucovorin rescue | ||
Escalating-dose intravenous methotrexate (no leucovorin rescue) | ||
High-risk and very high-risk ALL | Intrathecal chemotherapy | |
Methotrexate alone | ||
Methotrexate with cytarabine and hydrocortisone | ||
CNS-directed systemic chemotherapy | ||
Dexamethasone | ||
L-asparaginasea | ||
High-dose methotrexate with leucovorin rescue | ||
Cranial radiation therapy |
A major goal of current ALL clinical trials is to provide effective CNS therapy while minimizing neurological toxic effects and other late effects.
All therapeutic regimens for childhood ALL include intrathecal chemotherapy. Intrathecal chemotherapy is usually started at the beginning of induction, intensified during consolidation and, in many protocols, continued throughout the maintenance phase.
Intrathecal chemotherapy typically consists of one of the following:[5]
Unlike intrathecal cytarabine, intrathecal methotrexate has a significant systemic effect, which may contribute to prevention of marrow relapse.[6]
In addition to therapy delivered directly to the brain and spinal fluid, systemically administered agents are also an important component of effective CNS prophylaxis. The following systemically administered drugs provide some degree of CNS prophylaxis:
Evidence (CNS-directed systemic chemotherapy):
The proportion of patients receiving cranial radiation therapy has decreased significantly over time. At present, most newly diagnosed children with ALL are treated without cranial radiation therapy. Many groups administer cranial radiation therapy only to those patients considered to be at highest risk of subsequent CNS relapse, such as those with documented CNS leukemia at diagnosis (as defined above) (≥5 WBC/μL with blasts; CNS3) and/or T-cell phenotype with high presenting WBC count.[11] Some centers do not use cranial irradiation for any patients.[12]
In patients who do receive radiation therapy, the cranial radiation dose has been significantly reduced and administration of spinal irradiation is not standard.
Ongoing trials seek to determine whether radiation therapy can be eliminated from the treatment of all children with newly diagnosed ALL without compromising survival or leading to increased rate of toxicities from upfront and salvage therapies.[12,13] A meta-analysis of randomized trials of CNS-directed therapy has confirmed that radiation therapy can be replaced by intrathecal chemotherapy in most patients with newly diagnosed ALL. Additional systemic therapy may be required depending on the agents and intensity used.[14]; [1][Level of evidence B1]
Intrathecal chemotherapy without cranial radiation therapy, given in the context of appropriate systemic chemotherapy, results in CNS relapse rates of less than 5% for children with standard-risk ALL.[12,13,15-18]
The use of cranial radiation therapy is not a necessary component of CNS-directed therapy for these patients.[19,20] Some regimens use triple intrathecal chemotherapy (methotrexate, cytarabine, and hydrocortisone), while others use intrathecal methotrexate alone throughout therapy.
Evidence (triple intrathecal chemotherapy vs. intrathecal methotrexate):
Approaches to intrathecal therapy have also been studied in high-risk patients.
Evidence (triple intrathecal chemotherapy vs. intrathecal methotrexate):
Controversy exists as to whether high-risk and very high-risk patients should be treated with cranial radiation therapy, although there is a growing consensus that cranial radiation therapy may not be necessary for most of these patients.[14] Indications for cranial radiation therapy on some treatment regimens have included the following:[11]
Both the proportion of patients receiving radiation therapy and the dose of radiation administered have decreased over the last two decades.
Evidence (cranial radiation therapy):
Therapy for ALL patients with clinically evident CNS disease (≥5 WBC/high-power field with blasts on cytospin; cranial nerve palsies-CNS3) at diagnosis typically includes intrathecal chemotherapy and cranial radiation therapy (usual dose is 18 Gy).[18,20] Spinal radiation is no longer used.
Evidence (cranial radiation therapy):
Larger prospective studies will be necessary to fully elucidate the safety of omitting cranial radiation therapy in CNS3 patients.
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Toxic effects of CNS-directed therapy for childhood ALL can be acute and subacute or late developing. For more information, see the Late Effects of the Central Nervous System section in Late Effects of Treatment for Childhood Cancer.
The most common acute side effect associated with intrathecal chemotherapy alone is seizures. Up to 5% of nonirradiated patients with ALL treated with frequent doses of intrathecal chemotherapy will have at least one seizure during therapy.[12] Higher rates of seizure were observed with consolidation regimens that included 12 courses of intermediate-dose IV methotrexate (1 g/m2) given every 2 weeks with intrathecal chemotherapy.[29] Intrathecal and high-dose IV methotrexate have also been associated with a stroke-like syndrome, which, in most cases, appears to be reversible.[30]
Patients with ALL who develop seizures during the course of treatment and who receive anticonvulsant therapy should not receive phenobarbital or phenytoin as anticonvulsant treatment, as these drugs may increase the clearance of some chemotherapeutic drugs and adversely affect treatment outcome.[31]
Late effects associated with CNS-directed therapies include subsequent neoplasms, neuroendocrine disturbances, leukoencephalopathy, and neurocognitive impairments.
Subsequent neoplasms are observed primarily in survivors who received cranial radiation therapy. Meningiomas are the most commonly observed second neoplasm and are most often of low malignant potential. However, high-grade lesions can also occur. In a SJCRH retrospective study of more than 1,290 patients with ALL who had never relapsed, the 30-year cumulative incidence of a subsequent neoplasm occurring in the CNS was 3%. Excluding meningiomas, the 30-year cumulative incidence was 1.17%.[32] Nearly all of these CNS subsequent neoplasms occurred in previously irradiated patients. In a Pediatric Normal Tissue Effects in the Clinic (PENTEC) report on subsequent malignancies, patients who received radiation therapy to the brain had a pooled excess relative ratio per Gy of 0.44 for subsequent meningiomas. Patients treated with 12 Gy of radiation therapy have a substantially lower potential for developing meningiomas than those treated with 24 Gy.[33]
Neurocognitive impairments, which can range in severity and functional consequences, have been documented in long-term ALL survivors treated both with and without radiation therapy. In general, patients treated without cranial radiation therapy have less severe neurocognitive sequelae than irradiated patients, and the deficits that do develop represent relatively modest declines in a limited number of domains of neuropsychological functioning.[34-37] For patients who receive cranial radiation therapy, the frequency and severity of toxicities appear dose-related. Patients treated with 18 Gy of cranial radiation therapy appear to be at lower risk of severe impairments compared with those treated with doses of 24 Gy or higher. Younger age at diagnosis and female sex have been reported in many studies to be associated with a higher risk of neurocognitive late effects.[38]
Several studies have also evaluated the impact of other components of treatment on the development of late neurocognitive impairments. A comparison of neurocognitive outcomes of patients treated with methotrexate versus triple intrathecal chemotherapy showed no clinically meaningful difference.[24][Level of evidence C1] Controversy exists about whether patients who receive dexamethasone have a higher risk of neurocognitive disturbances.[39] In a SJCRH study of nonirradiated long-term survivors, treatment with dexamethasone was associated with increased risk of impairments in attention and executive function.[40] Conversely, long-term neurocognitive testing in 92 children with a history of standard-risk ALL who had received either dexamethasone or prednisone during treatment did not demonstrate any meaningful differences in cognitive functioning based on corticosteroid randomization.[41] In the COG AALL0232 study, patients with high-risk ALL were randomly assigned to receive either prednisone or dexamethasone during induction therapy.[42] Neurocognitive testing was done 8 to 24 months after treatment. Mean scores for all attention and executive functioning measures were in the average range, and there was no difference in scores between the patients who received prednisone and the patients who received dexamethasone. In the same study, patients were randomly assigned to receive either high-dose methotrexate or escalating methotrexate. There were no differences in attention or executive functioning scores between the two treatment groups.[42]
Evidence (neurocognitive late effects of cranial radiation):
Evidence (neurocognitive late effects in nonirradiated patients):
Historically, patients with T-acute lymphoblastic leukemia (ALL) have had a worse prognosis than children with B-ALL. In a review of a large number of patients treated on Children's Oncology Group (COG) trials over a 15-year period, T-cell immunophenotype still proved to be a negative prognostic factor on multivariate analysis.[1] However, with current treatment regimens, outcomes for children with T-ALL are now approaching those achieved for children with B-ALL. For example, the Dana-Farber Cancer Institute (DFCI) ALL Consortium reported a 5-year event-free survival (EFS) rate of 81% and an overall survival (OS) rate of 90% for patients with T-ALL who were treated on two consecutive clinical trials between 2005 and 2015.[2] Another example is the COG AALL0434 (NCT00408005) trial for T-ALL that resulted in a 5-year EFS rate of 83.8% and an OS rate of 89.5%.[3]
Treatment options for T-ALL include the following:
Evidence (chemotherapy and prophylactic cranial radiation therapy):
The use of prophylactic cranial radiation therapy in the treatment of patients with T-ALL is declining. Some groups, such as St. Jude Children's Research Hospital (SJCRH) and the Dutch Childhood Oncology Group (DCOG), do not use cranial radiation therapy in first-line treatment of ALL. Other groups, such as DFCI, COG, and BFM, are now limiting radiation therapy to patients with very high-risk features or CNS3 disease.
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
Infant ALL is uncommon, representing approximately 2% to 4% of cases of childhood ALL.[21] Because of their distinctive biological characteristics and their high risk of leukemia recurrence, infants with ALL are treated on protocols specifically designed for this patient population. Common therapeutic themes of the intensive chemotherapy regimens used to treat infants with ALL are the inclusion of postinduction intensification courses with high doses of cytarabine and methotrexate.[22-25]
Infants diagnosed within the first few months of life have a particularly poor outcome. In one study, patients diagnosed within 1 month of birth had a 2-year OS rate of 20%.[26][Level of evidence B4] In another study, the 5-year EFS rate for infants diagnosed at younger than 90 days was 16%.[24][Level of evidence B4]
For infants with KMT2A gene rearrangements, the EFS rates at 4 to 5 years continue to be in the 35% range.[22-24,27,28][Level of evidence B4] Factors predicting poor outcome for infants with KMT2A rearrangements include the following:[23,24]; [29][Level of evidence C2]; [30][Level of evidence B4]
In one report, any CNS involvement at diagnosis (CNS2, CNS3, or traumatic lumbar puncture with blasts) was also found to be an independent predictor of adverse outcome in infants with KMT2A-rearranged ALL.[31]
In addition to having a significantly higher relapse rate than older children with ALL, infant patients more frequently present with a higher acuity. In a large retrospective study, infants with ALL were more likely to present with multisystem organ failure than noninfants (12% and 1%). Infants also had greater requirements for blood products, diuretics, supplemental oxygen, and mechanical ventilation during induction, compared with noninfants.[32]
Infants are also at higher risk of developing treatment-related toxicity, especially infection. With current treatment approaches for this population, treatment-related mortality has been reported to occur in about 10% of infants, a rate that is much higher than the rate in older children with ALL.[23,24] On the COG AALL0631 (NCT00557193) trial, an intensified induction regimen resulted in an induction death rate of 15.4% (4 of 26 patients). The trial was subsequently amended to include a less-intensive induction and enhanced supportive care guidelines, resulting in a significantly lower induction death rate (1.6%; 2 of 123 patients) and significantly higher CR rate (94% vs. 68% with the previous, more intensified induction regimen).[33]
Infants with KMT2A gene rearrangements are generally treated on intensified chemotherapy regimens using agents not typically incorporated into frontline therapy for older children with ALL. However, despite these intensified approaches, EFS rates remain poor for these patients.
Evidence (intensified chemotherapy regimens for infants with KMT2A rearrangements):
Exploratory studies were conducted to evaluate the impact of sufficient lestaurtinib blood levels to achieve FLT3 inhibition and to evaluate the impact of ex vivo sensitivity of leukemia cells to lestaurtinib.
The role of allogeneic HSCT during first remission in infants with KMT2A gene rearrangements remains controversial.
Evidence (allogeneic HSCT in first remission for infants with KMT2A rearrangements):
For infants with ALL who undergo transplant in first CR, outcomes appear to be similar with non–total-body irradiation (TBI) regimens and TBI-based regimens.[37,39]
The optimal treatment for infants without KMT2A rearrangements also remains unclear, in part because of the paucity of data on the use of standard ALL regimens used in older children.
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Adolescents and young adults with ALL have been recognized as high risk for decades. Outcomes for this age group are inferior in almost all studies of treatment compared with children younger than 10 years.[42-44] The reasons for this difference include more frequent presentation of adverse prognostic factors at diagnosis, including the following:
In addition to more frequent adverse prognostic factors, patients in this age group have higher rates of treatment-related mortality [43-46] and nonadherence to therapy.[45,47]
Studies from the United States and France were among the first to identify the difference in outcome based on treatment regimens.[48] Other studies have confirmed that older adolescent and young adult patients fare better on pediatric rather than adult regimens.[48-56]; [57][Level of evidence B4] These study results are summarized in Table 12.
Given the relatively favorable outcome that can be obtained in these patients with chemotherapy regimens used for high-risk pediatric ALL, there is no role for the routine use of allogeneic HSCT for adolescents and young adults with ALL in first remission.[44]
Evidence (use of a pediatric treatment regimen for adolescents and young adults with ALL):
The reason that adolescents and young adults achieve superior outcomes with pediatric regimens is not known, although possible explanations include the following:[49]
Site and Study Group | Adolescent and Young Adult Patients (No.) | Median age (y) | Survival (%) |
---|---|---|---|
ALL = acute lymphoblastic leukemia; EFS = event-free survival; OS = overall survival. | |||
AIEOP = Associazione Italiana di Ematologia e Oncologia Pediatrica; CALGB = Cancer and Leukemia Group B; CCG = Children's Cancer Group; DCOG = Dutch Childhood Oncology Group; FRALLE = French Acute Lymphoblastic Leukaemia Study Group; GIMEMA = Gruppo Italiano Malattie EMatologiche dell'Adulto; HOVON = Dutch-Belgian Hemato-Oncology Cooperative Group; LALA = France-Belgium Group for Lymphoblastic Acute Leukemia in Adults; MRC = Medical Research Council (United Kingdom); NOPHO = Nordic Society for Pediatric Hematology and Oncology; UKALL = United Kingdom Acute Lymphoblastic Leukaemia. | |||
United States [48] | |||
CCG (Pediatric) | 197 | 16 | 67, OS 7 y |
CALGB (Adult) | 124 | 19 | 46 |
France [53] | |||
FRALLE 93 (Pediatric) | 77 | 16 | 67 EFS |
LALA 94 | 100 | 18 | 41 |
Italy [61] | |||
AIEOP (Pediatric) | 150 | 15 | 80, OS 2 y |
GIMEMA (Adult) | 95 | 16 | 71 |
Netherlands [62] | |||
DCOG (Pediatric) | 47 | 12 | 71 EFS |
HOVON | 44 | 20 | 38 |
Sweden [63] | |||
NOPHO 92 (Pediatric) | 36 | 16 | 74, OS 5 y |
Adult ALL | 99 | 18 | 39 |
United Kingdom [51] | |||
MRC ALL (Pediatric) | 61 | 15–17 | 71, OS 5 y |
UKALL XII (Adult) | 67 | 15–17 | 56 |
UKALL 2003 [64] | 229 | 16–24 | 72 EFS |
Adolescents with ALL appear to be at higher risk than younger children for developing therapy-related complications, including osteonecrosis, deep venous thromboses, and pancreatitis.[50,65,66] Before the use of postinduction intensification for treatment of ALL, osteonecrosis was infrequent. The improvement in outcome for children and adolescents aged 10 years and older was accompanied by an increased incidence of osteonecrosis.
The weight-bearing joints are affected in 95% of patients who develop osteonecrosis and operative interventions were needed for management of symptoms and impaired mobility in more than 40% of cases. Most cases are diagnosed within the first 2 years of therapy and the symptoms are often recognized during maintenance.
Evidence (osteonecrosis):
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Approximately 2% to 3% of childhood ALL cases occur in children with Down syndrome.[69-72] ALL in pediatric patients with Down syndrome is characterized by a lower incidence of both favorable (e.g., ETV6::RUNX1 and high hyperdiploidy with favorable trisomies) and unfavorable (e.g., BCR::ABL1, KMT2A rearrangements, low hypodiploidy, t(9;22)(q34;q11.2) or t(4;11)(q21;q23)) biology and a near absence of T-cell phenotype.[69-71,73,74]
Certain genomic abnormalities, such as IKZF1 deletions, CRLF2 aberrations, and JAK variants, are seen more frequently in ALL arising in children with Down syndrome than in those without Down syndrome.[75-79] Studies of children with Down syndrome and ALL suggest that the presence of IKZF1 deletions (but not CRLF2 aberrations or JAK variants) is associated with an inferior prognosis.[74,79,80]
Patients with Down syndrome have an increased risk of developing toxicities from treatment, including infections, mucositis, and seizures. In some studies, outcomes of children with Down syndrome and ALL have been reported to be inferior,[69,70,81-83] although in other studies, patients with Down syndrome appeared to fare as well as those without Down syndrome.[84,85] Inferior outcomes for patients with Down syndrome, when observed, are related to both an increased risk of relapse, as well as increased frequency of treatment-related mortality.[69-71,74,81,82]
Because of the well-established increase in toxicity experienced by patients with Down syndrome, some ALL protocols (such as those of the COG) have de-intensified risk-based treatment for patients with Down syndrome and ALL to minimize exposure to the morbid components of therapy. While this treatment reduction strategy reduces the frequency and severity of toxicities, its impact on antileukemic outcomes is not yet known.
Evidence (toxicity and outcome of patients with Down syndrome and ALL):
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
BCR::ABL1-positive (Philadelphia chromosome–positive [Ph+]) ALL is seen in about 3% of pediatric ALL cases, increases in adolescence, and is seen in 15% to 25% of adults. In the past, this subtype of ALL has been recognized as extremely difficult to treat, and patients had a poor outcome. In 2000, an international pediatric leukemia group reported a 7-year EFS rate of 25%, with an OS rate of 36%.[86] In 2010, the same group reported a 7-year EFS rate of 31% and an OS rate of 44% in patients with BCR::ABL1 ALL treated without tyrosine kinase inhibitors (TKIs).[87] Treatment of this subgroup has evolved, from an initial emphasis on aggressive chemotherapy, to allogeneic hematopoietic stem cell transplant (HSCT) in first complete remission (CR) as the standard of care, and currently to combination therapy using chemotherapy plus a TKI, with only a small number of patients allocated to allogeneic HSCT in first CR.
For patients with ALL and BCR::ABL1 gene fusions, MRD detection based on flow cytometry or detection of immunoglobulin/T-cell receptor (IG/TCR) rearrangements by either polymerase chain reaction (PCR) or next-generation sequencing (NGS) provides more reliable prognostication than methods based on quantification of BCR::ABL1 fusion transcripts or DNA.[88-90] In some cases, BCR::ABL1 fusion transcripts or DNA may persist in the absence of detectable MRD by flow cytometry or assays of IG/TCR rearrangements. This pattern is characteristic of BCR::ABL1–positive ALL with multilineage involvement. The multilineage subtype is distinguished from the more common subtype, BCR::ABL1–positive ALL with lymphoid-only involvement, in that the BCR::ABL1 fusion can be found in normal non-ALL B cells, T cells, and myeloid cells, as opposed to just lymphoblasts.[91,92] The persistence of BCR::ABL1 fusion DNA or RNA in BCR::ABL1–positive ALL with multilineage involvement likely represents evidence of a residual preleukemic clone and not leukemia cells. Therefore, the term MRD is a misnomer. Based on the limited numbers of patients studied to date, prognosis appears similar in both adults and children with lymphoid-only versus multilineage involvement BCR::ABL1–positive ALL.[88,89] In addition, it does not appear that persistence of BCR::ABL1 PCR positivity (in the absence of detectable MRD by other assays) has prognostic implication. Thus, for BCR::ABL1–positive ALL, flow cytometry and/or IG/TCR PCR or NGS assays are more reliable methods than BCR::ABL1 PCR to assess MRD for risk stratification and treatment decisions. For more information, see the Cytogenetics/Genomics of Childhood ALL section.
Standard therapy for patients with BCR::ABL1 ALL includes the use of a TKI (e.g., imatinib or dasatinib) in combination with cytotoxic chemotherapy, with or without allogeneic HSCT in first CR.
Imatinib mesylate is a selective inhibitor of the BCR::ABL1 protein kinase. Phase I and phase II studies of single-agent imatinib in children and adults with relapsed or refractory BCR::ABL1 ALL have demonstrated relatively high response rates, although these responses tended to be of short duration.[93,94]
Clinical trials in adults and children with BCR::ABL1 ALL have demonstrated the feasibility of administering imatinib mesylate in combination with multiagent chemotherapy.[95-97] Patients with BCR::ABL1 ALL demonstrated a better outcome after HSCT if imatinib was given before or after transplant.[98-102] Clinical trials have also demonstrated that many pediatric patients with BCR::ABL1 ALL have a comparable EFS using chemotherapy and a TKI rather than transplant.[102,103]
Dasatinib, a second-generation TKI, has also been studied in the treatment of BCR::ABL1 ALL. Dasatinib has shown significant activity in the CNS, both in a mouse model and a series of patients with CNS-positive leukemia.[104] The results of a phase I trial of dasatinib in pediatric patients indicated that once-daily dosing was associated with an acceptable toxicity profile, with few nonhematologic grade 3 or grade 4 adverse events.[105]
Evidence (TKI):
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
The prognosis for a child with acute lymphoblastic leukemia (ALL) whose disease recurs depends on multiple factors.[1-14]; [15][Level of evidence C2]
The following two important risk factors after first relapse of childhood ALL are key to determining prognosis and treatment approach:
Other prognostic factors include the following:
Patients who have isolated extramedullary relapse generally fare better than those who have relapse involving the marrow. In some studies, patients with combined marrow/extramedullary relapse had a better prognosis than did those with a marrow only relapse. However, other studies have not confirmed this finding.[5,13,16]
For patients with relapsed B-ALL, early relapses fare worse than later relapses, and marrow relapses fare worse than isolated extramedullary relapses. For example, survival rates range from less than 20% for patients with marrow relapses occurring within 18 months from diagnosis to higher than 60% for those whose relapses occur more than 36 months from diagnosis.[5,13,17]
For patients with isolated central nervous system (CNS) relapses, the overall survival (OS) rates are 40% to 50% for early relapse (<18 months from diagnosis) and 75% to 80% for those with late relapses (>18 months from diagnosis).[13,18] No evidence exists that early detection of relapse by frequent surveillance (complete blood counts or bone marrow tests) in off-therapy patients improves outcome.[19]
Age 10 years and older at diagnosis and at relapse have been reported as independent predictors of poor outcome.[13,16] A Children’s Oncology Group (COG) study further showed that although patients aged 10 to 15 years at initial diagnosis do worse than patients aged 1 to 9 years (3-year postrelapse survival rate, 35% vs. 48%), those older than age 15 years did much worse (3-year OS rate, 15%; P = .001).[20]
For patients with B-ALL who were diagnosed at age 18 years or younger and experienced a late relapse, age was not a significant predictor of subsequent outcome when analyzed by quartiles. However, the outcome for patients aged 18 years and older at time of relapse was significantly inferior to the outcome for patients relapsing at age younger than 18 years (39.5% vs. 68.7%; P = .0001).[21]
The Berlin-Frankfurt-Münster (BFM) group has also reported that high peripheral blast counts (>10,000/μL) at the time of relapse were associated with inferior outcomes in patients with late marrow relapses.[10]
Children with Down syndrome and ALL who relapse have generally had inferior outcomes resulting from increased induction deaths, treatment-related mortality, and relapse.
The COG reported that risk group classification at the time of initial diagnosis was prognostically significant after relapse. Patients who met National Cancer Institute (NCI) standard-risk criteria at initial diagnosis fared better after relapse than did NCI high-risk patients.[13]
Patients with marrow relapses who have persistent morphological disease at the end of the first month of reinduction therapy have an extremely poor prognosis, even if they subsequently achieve a second complete remission (CR).[24][Level of evidence B4]; [25][Level of evidence C1] Several studies have demonstrated that minimal residual disease (MRD) levels after the achievement of second CR are of prognostic significance in relapsed ALL.[21,24,26-29]; [30,31][Level of evidence C2] High levels of MRD at the end of reinduction and at later time points have been correlated with an extremely high risk of subsequent relapse.[21,29]
Changes in variant profiles from diagnosis to relapse have been identified by gene sequencing.[32,33] While oncogenic gene fusions (e.g., TCF3::PBX1, ETV6::RUNX1) are almost always observed between the time of initial diagnosis and relapse, single nucleotide variants and copy number variants may be present at diagnosis, but not at relapse, and vice versa.[32,34] For example, while RAS family variants are common at both diagnosis and relapse, the specific RAS family variants may change from diagnosis to relapse as specific leukemic subclones rise and fall during the course of treatment.[32] By contrast, relapse-specific variants in NT5C2 (a gene involved in nucleotide metabolism) have been noted in as many as 45% of ALL cases with early relapse.[32,35,36]
TP53 alterations (variants and/or copy number alterations) are observed in approximately 10% of patients with ALL at first relapse and have been associated with an increased likelihood of persistent leukemia after initial reinduction and poor event-free survival (EFS) rates.[21,37] In one study, approximately one-half of the TP53 alterations were present at initial diagnosis and half were newly observed at time of relapse.[37]
IKZF1 deletions have also been reported to be associated with a poor prognosis in patients with B-ALL in first bone marrow relapse.[38] However, in a BFM study of patients with B-ALL who experienced a late first marrow relapse, IKZF1 deletions were not prognostically significant.[21]
RAS pathway variants (KRAS, NRAS, FLT3, and PTPN11) are common at relapse in B-ALL patients, and they were found in approximately 40% of patients at first relapse in one study of 206 children.[32,39] As observed at diagnosis, the frequency of RAS pathway variants at relapse differs by cytogenetic subtype (e.g., high frequency in hyperdiploid cases and low frequency in ETV6::RUNX1 cases). The presence of RAS pathway variants at relapse was associated with early relapse. However, presence of RAS pathway variants at relapse was not an independent predictor of outcome.
Patients with ETV6::RUNX1-positive ALL appear to have a relatively favorable prognosis at first relapse, consistent with the high percentage of such patients who relapse more than 36 months after diagnosis.[38,40]
Immunophenotype is an important prognostic factor at relapse. Patients with T-ALL who experience a marrow relapse (isolated or combined) at any time during treatment or posttreatment are less likely to achieve a second remission and long-term EFS than are patients with B-ALL.[5,24]
Standard treatment options for first bone marrow relapse include the following:
Initial treatment of relapse consists of reinduction therapy to achieve a second CR. Using either a four-drug reinduction regimen (similar to that administered to newly diagnosed high-risk patients) or an alternative regimen including high-dose methotrexate and high-dose cytarabine, approximately 85% of patients with a marrow relapse achieve a second CR at the end of the first month of treatment.[5]; [24,41][Level of evidence B4] Patients with early marrow relapses have a lower rate of achieving a morphological second CR (approximately 70%) than do those with late marrow relapses (approximately 95%).[24,41]
Evidence (reinduction chemotherapy):
The potential benefit of mitoxantrone in relapsed ALL regimens requires further investigation.
Patients with relapsed T-ALL have much lower rates of achieving second CR with standard reinduction regimens than do patients with B-cell phenotype.[24] Treatment of children with first relapse of T-ALL in the bone marrow with single-agent therapy using the T-cell selective agent, nelarabine, has resulted in response rates of approximately 50%.[50] In a trial of 28 pediatric patients with relapsed or refractory T-ALL who were treated with single-agent nelarabine, the overall response rate (CR and CR without hematological recovery) was 39.3%.[51] The combination of nelarabine, cyclophosphamide, and etoposide has also been used in patients with relapsed or refractory T-ALL, with response rates comparable to single-agent nelarabine.[52]; [53][Level of evidence C3] In a phase I/II trial of this combination in patients with relapsed or refractory T-ALL and T-lymphoblastic lymphoma, the overall best response rate (CR + CR with incomplete platelet recovery + partial response) was 38% (8 of 21 patients). The T-ALL cohort had a response rate of 33% (4 of 12 patients), and the T-lymphoblastic lymphoma cohort had a response rate of 44% (4 of 9 patients).[53][Level of evidence C3]
The proteosome inhibitor bortezomib (in combination with chemotherapy) has also been evaluated in patients with relapsed T-ALL. In a phase II trial conducted by the COG, the combination of bortezomib plus vincristine, prednisone, pegaspargase, and doxorubicin resulted in a second CR rate of 68% in T-ALL patients in first relapse.[49]
In the phase II open-label DELPHINUS (NCT03384654) study, daratumumab was added to induction backbone chemotherapy to treat patients with relapsed or refractory T-ALL. Daratumumab is a human IgGk monoclonal antibody that targets CD38, which is highly expressed on T-ALL blasts. Chemotherapy consisted of four-drug induction therapy. At the end of induction, the CR rates were 41.7% for children and 60.0% for young adults. The overall response rates (at any time point) were 83.3% for children and 80.0% for young adults. Patients who achieved a CR proceeded to HSCT. The 24-month EFS rates for children and young adults were 36.1% and 20.0%, respectively. The overall survival rates were 41.3% and 25.0%, respectively. The addition of daratumumab was shown to be tolerable.[54]
Reinduction failure is a poor prognostic factor, but subsequent attempts to obtain remission can be successful and lead to survival after HSCT, especially if MRD becomes low or nondetectable. For more information about MRD risk stratification, see the Late-relapsing B-ALL section. Approaches have traditionally included the use of drug combinations distinct from the first attempt at treatment. These regimens often contain newer agents under investigation in clinical trials. Although survival is progressively less likely after each attempt, two to four additional attempts are often pursued, with diminishing levels of success measured after each attempt.[55] Because studies of chimeric antigen receptor (CAR) T cells, blinatumomab, and inotuzumab have been shown to lead to high rates of remission in multiply relapsed and chemotherapy-refractory B-ALL patients, trials testing these agents after initial relapse are underway. For more information, see the Immunotherapeutic Approaches for Relapsed or Refractory ALL section.
For B-ALL patients with an early marrow relapse, allogeneic transplant from an HLA-identical sibling or matched unrelated donor that is performed in second remission has been reported in most studies to result in higher leukemia-free survival (LFS) than a chemotherapy approach.[7,30,56-64] However, even with transplant, the survival rate for patients with early marrow relapse is less than 50%. One study analyzed 278 patients with early-relapsing B-ALL who were treated between 2001 and 2013 in trials conducted by either the ALL-REZ BFM or UK-ALL groups. The OS rate was 32.6%.[29] More favorable outcomes were observed for patients with early-relapsed B-ALL who had low end-reinduction MRD, low pre-HSCT MRD, and those who experienced acute GVHD. For more information, see the Hematopoietic Stem Cell Transplantation for First and Subsequent Bone Marrow Relapse section.
After initial reinduction chemotherapy, the use of blinatumomab instead of intensive cytotoxic chemotherapy as pre-HSCT consolidation has been shown to be associated with superior outcomes.[65,66]
Evidence (blinatumomab before HSCT in early-relapsing B-ALL):
Previous studies of late marrow relapse in patients with B-ALL showed that a primary chemotherapy approach after achievement of second CR resulted in survival rates of approximately 50%, and it was not clear whether allogeneic transplant was associated with a superior cure rate.[5,9,42,67-69]; [70][Level of evidence C1] Subsequent data have shown that the presence of end-reinduction MRD identifies patients with a high risk of ensuing relapse if treated with chemotherapy alone (no HSCT) in second CR. A number of studies have shown that patients with a late marrow relapse who have high end-reinduction MRD have better outcomes if they receive an allogeneic HSCT in second CR after achieving low or nondetectable MRD status.[17,71]
Evidence (MRD-based risk stratification for late-relapse of B-ALL):
There is limited information regarding the treatment of patients with relapsed BCR::ABL1 ALL in the era of tyrosine kinase inhibitors (TKIs).
A French multi-institutional study reported on 27 children with relapsed BCR::ABL1 ALL (24 overt, 3 molecular) who had all been initially treated with a regimen that included imatinib.[73][Level of evidence C1]
For patients with T-ALL who achieve remission after bone marrow relapse, outcomes with postreinduction chemotherapy alone have generally been poor,[5] and these patients are usually treated with allogeneic HSCT in second CR, regardless of time to relapse. At 3 years, the OS rate after allogeneic transplant for T-ALL in second remission was reported to be 48%, and the DFS rate was 46%.[74][Level of evidence C1]
Although there are no studies directly comparing chemotherapy with HSCT for patients in third or subsequent CR, because cure with chemotherapy alone is rare, transplant has generally been considered a reasonable approach for those achieving remission. Long-term survival for ALL patients after a second relapse is particularly poor, in the range of less than 10% to 20%.[62] One of the main reasons for this is failure to obtain a third remission. Numerous attempts at novel combination approaches have resulted in only about 40% of children in second relapse achieving remission.[75] However, two studies that added bortezomib to standard reinduction agents in multiply relapsed or refractory patients have resulted in 70% to 80% CR rates.[47][Level of evidence C1]; [48][Level of evidence C3] Clofarabine as a single agent has also been used in patients with multiply relapsed and refractory leukemia. In an analysis of 12 clinical studies of clofarabine in pediatric patients with relapsed or refractory ALL, the overall remission rate (CR plus CR with either incomplete platelet recovery or incomplete neutrophil and platelet recovery) was 28%.[76]
A phase I trial tested the combination of venetoclax (BCL2 inhibitor) and navitoclax (BCL2 and BCL-XL inhibitor) given along with standard chemotherapy (vincristine, dexamethasone, with/without pegaspargase) in adult and pediatric patients with multiply relapsed or refractory B-ALL or T-ALL. The combination was well tolerated in general (the major toxicity was prolonged myelosuppression) and CR was achieved in 60% of patients, 57% of whom had nondetectable MRD.[77]
For multiply relapsed patients who achieve CR, HSCT has been shown to cure 20% to 35%, with failures occurring because of high rates of relapse and transplant-related mortality.[78-82][Level of evidence C1]
Given the poor outcomes for multiply relapsed B-ALL patients who are treated with chemotherapy followed by HSCT, CAR T-cell therapy has come to be used as standard in this population and has resulted in high rates of remission and improved survival (although direct comparative trials are lacking). For more information, see the CAR T-cell therapy section.
Immune therapies such as blinatumomab and inotuzumab have been used in this population and have improved rates of remission, which has then often led to cure when followed by HSCT.[83-87] Comparative studies of immune and cell therapy approaches have yet to be performed in this population, so data to inform optimal approaches to first therapy or sequence of therapies are lacking.
An expert panel review of indications for HSCT was published in 2012.[88] Components of the transplant process that have been shown to be important in improving or predicting outcome of HSCT for children with ALL include the following:
An analysis from the CIBMTR examined pretransplant variables to create a model for predicting LFS posttransplant in pediatric patients (aged <18 years). All patients were first transplant recipients who had myeloablative conditioning, and all stem cells sources were included. For patients with ALL, the predictors associated with lower LFS included age younger than 2 years, second CR or higher, MRD positivity (only in second CR, not in first CR), and presence of morphologically detectable disease at time of transplant. A scale was established to stratify patients on the basis of risk factors to predict survival. The 5-year LFS rate was 68% for the low-risk group, 51% for the intermediate-risk group, and 33% for the high-risk group.[89]
For patients proceeding to allogeneic HSCT, TBI appears to be an important component of the conditioning regimen. Several studies have indicated that TBI is associated with superior outcomes in patients with ALL compared with chemotherapy-only preparative regimens.
Evidence (TBI as part of the preparative regimen for ALL):
Based on these data, TBI for all but the youngest children (age <2–3 years) remains standard of care in most centers in North America and Europe.[74,81,92-94]
Fractionated TBI (total dose, 12–14 Gy) is often combined with cyclophosphamide, etoposide, thiotepa, or a combination of these agents. Study findings with these combinations have generally resulted in similar rates of survival,[95-97] although one study suggested that if cyclophosphamide is used without other chemotherapy drugs, a dose of TBI in the higher range may be necessary.[98] Many standard regimens include cyclophosphamide with TBI dosing between 13.2 and 14 Gy. On the other hand, when cyclophosphamide and etoposide were used with TBI, doses above 12 Gy resulted in worse survival resulting from excessive toxicity.[96]
A secondary analysis of the COG ASCT0431 (NCT00382109) HSCT trial showed that ALL patients treated with TBI that involved dose modulation of lung fields to less than 8 Gy had a survival advantage on multivariate analysis (hazard ratio [HR], 1.85; P = .04). Transplant-related mortality trended higher for patients who received doses of 8 Gy and higher, but did not reach significance (HR, 1.78; P = .21). Because lower doses were not associated with increased relapse and resulted in improved survival, dose modulation for lung fields to less than 8 Gy was included in the COG AALL1331 (NCT02883049) trial. Results from the AALL1331 study and other studies looking more precisely into pulmonary dose modulation for TBI are needed to clarify and explain this observation.[99]
Remission status at the time of transplant has long been known to be an important predictor of outcome, with patients not in CR at HSCT having very poor survival rates.[100] Several studies have also demonstrated that the level of MRD at the time of transplant is a key risk factor in children with ALL in CR undergoing allogeneic HSCT.[27,101-109][Level of evidence C1]; [21,29,92,110] Survival rates of patients who are MRD positive pretransplant have been reported between 20% and 47%, compared with 60% to 88% in patients who are MRD negative.
When patients received two to three cycles of chemotherapy in an attempt to achieve an MRD-negative remission, the benefit of further intensive therapy for achieving MRD negativity must be weighed against the potential for significant toxicity. In addition, there is not clear evidence showing that MRD positivity in a patient who has received multiple cycles of therapy is a biological disease marker for poor outcome that cannot be modified, or whether further intervention bringing such patients into an MRD negative remission will overcome this risk factor and improve survival.
The presence of detectable MRD post-HSCT has been associated with an increased risk of subsequent relapse.[108,111-114] For patients with MRD that is detectable pre-HSCT, the detection of any level of MRD post-HSCT puts that patient at very high risk of failure (>90%).[92] The accuracy of MRD for predicting relapse increases as time from HSCT elapses and relapse risk is higher for patients who have higher levels of MRD detected at any given time. One study showed higher sensitivity for predicting relapse using next-generation sequencing assays than with flow cytometry, especially early after HSCT.[113]
Survival rates after matched unrelated donor and umbilical cord blood transplant have improved significantly over the past decade and offer an outcome similar to that obtained with matched sibling donor transplants.[60,115-118]; [119,120][Level of evidence B4]; [121][Level of evidence C1]; [122][Level of evidence C2] Rates of clinically extensive GVHD and treatment-related mortality remain higher after unrelated donor transplant compared with matched sibling donor transplants.[61,78,115] However, there is some evidence that matched unrelated donor transplant may yield a lower relapse rate. National Marrow Donor Program and CIBMTR analyses have demonstrated that rates of GVHD, treatment-related mortality, and OS have improved over time.[123-125]; [126,127][Level of evidence C1]
Another CIBMTR study suggested that outcome after one- or two-antigen mismatched cord blood transplants may be equivalent to that for a matched family donor or a matched unrelated donor.[128] In certain cases in which no suitable donor is found or an immediate transplant is considered crucial, a haploidentical transplant using large doses of stem cells may be considered.[129,130] Improved approaches to haploidentical HSCT using alpha-beta T-cell receptor (TCR)/CD19 depletion or posttransplant cyclophosphamide have shown survival rates that are similar to those in studies using other stem cell sources.[131] A large multicenter trial from Italy showed similar outcomes using alpha-beta TCR/CD19–depleted haploidentical donors compared with matched unrelated donors, with lower rates of GVHD.[132] A second multicenter trial using alpha-beta TCR/CD19–depleted killer immunoglobulin-like receptor (KIR)–favorable haploidentical donors showed survival outcomes comparable to all other stem cell sources, with lower rates of GVHD and transplant-related mortality.[133]
Most studies of pediatric and young adult patients that address this issue suggest an effect of both acute and chronic GVHD in decreasing relapse.[115,134-137]
To harness this GVL effect, a number of approaches to prevent relapse after transplant have been studied, including withdrawal of immune suppression or donor lymphocyte infusion and targeted immunotherapies, such as monoclonal antibodies and natural killer cell therapy.[138,139] Trials in Europe and the United States have shown that patients defined as having a high risk of relapse based on increasing recipient chimerism (i.e., increased percentage of recipient DNA markers) can successfully undergo withdrawal of immune suppression without excessive toxicity.[140,141]
The use of post-HSCT intrathecal chemotherapy chemoprophylaxis is controversial.[144-147]
For patients with B-ALL who relapse after allogeneic HSCT and can be successfully weaned from immune suppression and have no GVHD, tisagenlecleucel and other 4-1BB CAR T-cell approaches have resulted in EFS rates exceeding 50% at 12 months.[148] For patients with T-ALL who relapse or for patients with B-ALL who are unable to undergo CAR T-cell therapy, a second ablative allogeneic HSCT may be feasible. However, many patients will be unable to undergo a second HSCT procedure because of failure to achieve remission, early toxic death, or severe organ toxicity related to salvage chemotherapy.[149] Among the highly selected group of patients able to undergo a second ablative allogeneic HSCT, approximately 10% to 30% will achieve long-term EFS.[149-154]; [82,155][Level of evidence C1] Prognosis is more favorable in patients with longer duration of remission after the first HSCT and in patients with CR at the time of the second HSCT.[151,152,156] In addition, one study showed an improvement in survival after second HSCT if acute GVHD occurred, especially if it had not occurred after the first transplant.[157]
Reduced-intensity approaches can also cure a percentage of patients when used as a second allogeneic transplant approach, but only if patients achieve a CR confirmed by flow cytometry.[158][Level of evidence B4] Donor leukocyte infusion has limited benefit for patients with ALL who relapse after allogeneic HSCT.[159]; [160][Level of evidence C1]
Whether a second allogeneic transplant is necessary to treat isolated CNS and testicular relapse after HSCT is unknown. A small series has shown survival in selected patients using chemotherapy alone or chemotherapy followed by a second transplant.[161][Level of evidence C1]
Immunotherapeutic approaches for the treatment of relapsed or refractory ALL include monoclonal antibody therapy and CAR T-cell therapy.
The following two immunotherapeutic agents have been studied for the treatment of patients with relapsed or refractory B-ALL:
In a phase I/II trial of children younger than 18 years with relapsed/refractory B-ALL, 27 of 70 patients (39%) treated at the recommended phase II dose achieved a CR with single-agent blinatumomab; 52% of those achieving CR were MRD negative.[162]
In a pooled analysis of five trials that included 166 pediatric and 517 adult patients, those with less than 50% bone marrow blasts at the start of treatment had better responses to blinatumomab. Among pediatric patients, CR rates (including CR with partial hematologic recovery [CRh] and CR with incomplete hematologic recovery [CRi]) were 65.3% for patients with less than 50% baseline bone marrow blast percentage, compared with 38.3% for patients with 50% or more baseline bone marrow blast percentage. Similarly, MRD responses were more frequent in patients with less than 50% baseline bone marrow blast percentage than in those who had 50% or more bone marrow blast percentage (51.4% vs. 25.5%). There was no significant difference in these end points when comparing patients with 5% to <25% blasts and 25% to <50% blasts at the start of blinatumomab treatment.[163]
In trials of adult patients with relapsed/refractory B-ALL, CR was achieved in approximately 80% of patients.[164,165]
There have been two phase II trials of single-agent inotuzumab (both trials used 1.8 mg/m2 total dose in the first course and 1.5 mg/m2 in subsequent courses) used in the treatment of pediatric patients with relapsed (second or greater relapse) or refractory ALL.[87]
Expert panel recommendations for the prevention of SOS associated with HSCT after inotuzumab include limiting inotuzumab to two courses, avoiding dual-alkylator HSCT regimens, avoiding hepatotoxic agents, and considering SOS prophylactic agents.[167]
Chimeric antigen receptor (CAR) T-cell therapy is a therapeutic strategy for pediatric B-ALL patients with refractory disease or those in second or subsequent relapse. This treatment involves engineering T cells with a CAR that redirects T-cell specificity and function.[170] One widely utilized target of CAR-modified T cells is the CD19 antigen expressed on almost all normal B cells and most B-cell malignancies.
Treatment with CAR T cells has been associated with cytokine release syndrome, which can be life-threatening.[171,172] Cytokine release syndrome presents as fever, headache, myalgias, hypotension, capillary leak, hypoxia, and renal dysfunction. Severe cytokine release syndrome has been effectively treated with tocilizumab, an anti–interleukin-6 receptor (IL-6R) antibody.[171,173] Long-term persistence of CAR T cells can lead to B-cell aplasia, necessitating immunoglobulin replacement.[171]
Neurotoxicity, including aphasia, altered mental status, and seizures, has also been observed with CAR T-cell therapy, and the symptoms usually resolve spontaneously.[174] CNS symptoms have not responded to IL-6R–targeting agents or other approaches.
Other CAR T-cell therapy side effects include coagulopathy, hemophagocytic lymphohistiocytosis (HLH)–like laboratory changes, and cardiac dysfunction. Between 20% and 40% of patients require treatment in the intensive care unit, mostly pressor support, with 10% to 20% of patients requiring intubation and/or dialysis.[170,171,175,176] In one study, patients who developed HLH-like toxicities after CAR T-cell therapy had lower relapse-free survival (RFS) and OS rates than those who did not develop these toxicities (RFS rates, 25.7% vs. 57.6%; OS rates, 4% vs. 81%).[177]
For an extensive discussion of CAR T-cell toxicities and approaches to mitigate these toxicities, see Pediatric Chimeric Antigen Receptor (CAR) T-Cell Therapy.
Several clinical trials of CAR T cells targeting CD19 in relapsed/refractory ALL have been conducted, with encouraging results. Published trials have involved the use of two types of costimulatory molecules, 4-1BB and CD28. CD28-based approaches have led to high rates of remission, but CAR T cells in these trials rarely persist longer than 1 to 2 months, necessitating HSCT for long-term survival.[178] Many of the trials that used 4-1BB costimulation have resulted in persistence of CAR T cells for extended periods and long-term responses.[148,175] Because early reports of efficacy were markedly better than previous experiences, trials leading to regulatory approval for tisagenlecleucel for multiply relapsed/refractory ALL were performed without randomization, relying on historical experiences for their statistical design. Retrospective matched-control analyses using pre-CAR T-cell therapy standard-of-care cohorts have shown marked improvements in OS and EFS with tisagenlecleucel. However, to date, no prospective trials have compared CAR T-cell approaches with other treatment modalities.[179]
Evidence (CD19-targeted CAR T-cell therapy):
Although there are concerns that the treatment of patients with CNS disease could increase risk of neurotoxicity associated with CAR T-cell therapy, recent studies have shown that patients with CNS disease who undergo CAR T-cell therapy have similar outcomes to those without CNS disease, with no increase in severe immune effector cell associated neurotoxicity syndrome (ICANS).[186,187]
Evidence (CAR T-cell therapy for patients with CNS disease):
Initial trials that used CAR T-cell therapy demonstrated that a very high proportion of patients with relapsed or refractory disease achieved CR, regardless of white blood cell count, cytogenetics,[191] number of prior therapies, chemotherapy responsiveness, or other traditional factors associated with chemotherapy responsiveness. Subsequent studies have identified the following factors that are associated with poor long-term responses in patients who achieve initial CRs after CAR T-cell infusions:
Retrospective studies have described outcomes and assessed factors associated with survival after relapse in patients who received CD19-targeted CAR T-cell therapy:
Investigators have examined several strategies to prevent relapse after initial CAR T-cell infusions. These strategies include repeating CAR T-cell infusions for various indications and risk groups, giving maintenance chemotherapy, and infusing a different type of CAR T cell.[185,198]
Certain patients may not be amenable to producing autologous CD19-directed CAR T cells, such as those with very early relapse after HSCT. CAR T-cell therapy using cells produced from the donor of a given patient who is post-HSCT may be an option for these patients. A small group of patients who relapsed after HSCT received allogeneic CD19-directed CAR T cells that were produced from T cells obtained from donors.[200] All 13 patients obtained an MRD-negative bone marrow CR, with 83% CR at extramedullary sites. Three patients underwent a subsequent HSCT. At a median follow-up of 12 months, eight patients remained in bone marrow CR. There was only one case of acute GVHD. These results provide preliminary evidence for the safety and efficacy of using CAR T cells produced from their previous allogeneic donor in the setting of relapsed ALL.
Studies of second-generation CD19-targeted CAR T-cell approaches have shown that constructs using CD28-based costimulatory molecules result in a relatively short half-life of CAR T cells. This short half-life leads to very high rates of relapse unless HSCT is done soon after recovery from CAR T-cell toxicities. Therefore, treatments with CD28-targeted CAR T cells are considered bridging therapies, and HSCT is generally planned for eligible patients 4 to 8 weeks after the CAR T-cell procedure. Tisagenlecleucel and other CARs with 4-1BB costimulatory molecules have been shown to have significant levels of persistence, leading to long-term remission in 45% to 50% of patients without additional therapy. Up to 80% of relapses occur during the first year after CAR T-cell therapy and there is a window of deep remission. Because of this finding, some study groups have argued for planned HSCT during remission early after CAR T-cell infusion, either in all patients or in patients who have not had a previous HSCT. No randomized trials have addressed this issue, but some studies have addressed this question retrospectively.
Evidence (consolidative HSCT after CAR T-cell therapy):
At least 50% of relapses after CD19-targeted CAR T-cell therapy have occurred because of antigen escape, which has been shown to be related to mutations in the CD19 protein that delete the binding sites used by CAR T-cell constructs.[203] Salvage after antigen escape has been documented with cell and immune therapy approaches targeting a second lymphoid antigen, CD22. Studies looking specifically at inotuzumab rescue of CD19-negative relapse have not been published, but two groups have reported high rates of subsequent achievement of remission and survival, generally when CD22 CAR T-cell therapy is followed by HSCT therapy.[204,205]; [206][Level of evidence C1]; [202][Level of evidence C2] Because the CD22 antigen can be downregulated, there is concern about targeting CD22 alone for long-term CAR T-cell response; consequently, this approach is often paired with HSCT.
Evidence (CD22-targeted CAR T-cell therapy):
Investigators have tested approaches aimed at targeting multiple ALL antigens to overcome relapse caused by immune escape. Studies have included the following approaches:
While none of these approaches are commercially available, studies of this approach are ongoing.
A large study included Chinese patients who received a 1:1 mix of independently manufactured CD19- and CD22-targeted CAR T cells. This treatment produced remission in 99% of patients. Persistent B-cell aplasia at 6 months and HSCT after CAR T cells were each associated with improved survival.[208]
A second study in China infused CD19-targeted CAR T cells followed by CD22-targeted T cells after achieving remission. This resulted in an 18-month EFS rate of 80%, with HSCT occurring in only 10% of patients.[209]
Three additional trials examined single manufacturing processes of multitargeted CAR T cells. Treatment with this type of CAR T cells resulted in reasonable rates of remission. However, the duration of CAR T cells was poor, and patient outcomes were no better with this CAR T-cell therapy than outcomes with commercial CD19-targeted CAR T cells.[210-212]
With improved success in treating children with ALL, the incidence of isolated extramedullary relapse has decreased. The incidence of isolated CNS relapse is less than 5%, and testicular relapse is less than 1% to 2%.[213-215] As with bone marrow and mixed relapses, time from initial diagnosis to relapse is a key prognostic factor in isolated extramedullary relapses.[216] In addition, age older than 6 years at relapse was noted in one study as an adverse prognostic factor for patients with an isolated extramedullary relapse, while a second study suggested age 10 years as a better cutoff.[16,217] Of note, in most children with isolated extramedullary relapses, submicroscopic marrow disease can be demonstrated using sensitive molecular techniques,[218] and successful treatment strategies must effectively control both local and systemic disease. Patients with an isolated CNS relapse who show greater than 0.01% MRD in a morphologically normal marrow have a worse prognosis (5-year EFS rate, 30%) than do patients with either no MRD or MRD less than 0.01% (5-year EFS rate, 60%).[218]
Standard treatment options for childhood ALL that has recurred in the CNS include the following:
While the prognosis for children with isolated CNS relapse had been quite poor in the past, aggressive systemic and intrathecal therapy followed by cranial or craniospinal radiation has improved the outlook, particularly for patients who did not receive cranial radiation during their first remission.[18,216,219,220]
Evidence (chemotherapy and radiation therapy):
A number of case series describing HSCT in the treatment of isolated CNS relapse have been published.[222,223] Although some reports have suggested a possible role for HSCT for patients with isolated CNS disease with very early relapse and T-cell disease, there is less evidence for the need for HSCT in early isolated CNS relapse in B-cell disease, and no evidence in late relapse. In the COG AALL0433 study, patients with B-ALL and a very early isolated CNS relapse were treated with either intensive chemotherapy with cranial radiation or allogeneic HSCT after second CR was achieved, depending on availability of donors and physician decisions. A small number of patients proceeded to HSCT (n = 7), which was associated with more favorable DFS and OS, compared with patients who continued on chemotherapy and radiation therapy.[31]
Evidence (HSCT):
Evidence (CAR T-cell therapy for isolated CNS disease that is multiply relapsed):
CAR T cells have been shown to penetrate the CNS and lead to high rates of remission in patients with CNS disease with or without marrow involvement. A small number of studies have addressed the relationship of CNS involvement with CAR T-cell therapy outcomes.
The results of treatment of isolated testicular relapse depend on the timing of the relapse. The 3-year EFS rate of boys with overt testicular relapse during therapy is approximately 40%; it is approximately 85% for boys with late testicular relapse.[225]
Standard treatment options in North America for childhood ALL that has recurred in the testes include the following:
Standard approaches for treating isolated testicular relapse in North America include local radiation therapy along with intensive chemotherapy. In some European clinical trial groups, orchiectomy of the involved testicle is performed instead of radiation. Biopsy of the other testicle is performed at the time of relapse to determine if additional local control (surgical removal or radiation) is to be performed. A study that looked at testicular biopsy at the end of frontline therapy failed to demonstrate a survival benefit for patients with early detection of occult disease.[226]
There are limited clinical data concerning outcome without the use of radiation therapy or orchiectomy. Treatment protocols that have tested this approach have incorporated intensified dosing of chemotherapy agents (e.g., high-dose methotrexate) that may be able to achieve antileukemic levels in the testes.
Evidence (treatment of testicular relapse):
Information about NCI-supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Multiple clinical trials investigating new agents and new combinations of agents are available for children with second or subsequent relapsed or refractory ALL and should be considered. These trials are testing targeted treatments specific for ALL, including monoclonal antibody–based therapies and drugs that inhibit signal transduction pathways required for leukemia cell growth and survival. Multiple clinical trials investigating new agents, new combinations of agents, and immunotherapeutic approaches are available. For more information, see the ClinicalTrials.gov website.
Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Cytogenetics/Genomics of Childhood ALL
Added Liu et al. as reference 2.
Added Purvis et al. as reference 26.
Added Genomics of ALL in children with Down syndrome as a new subsection.
Central Nervous System (CNS)-Directed Therapy for Childhood ALL
Added text to state that in the COG AALL0232 study, patients with high-risk ALL were randomly assigned to receive either prednisone or dexamethasone during induction therapy. Neurocognitive testing was done 8 to 24 months after treatment. Mean scores for all attention and executive functioning measures were in the average range, and there was no difference in scores between the patients who received prednisone and the patients who received dexamethasone. In the same study, patients were randomly assigned to receive either high-dose methotrexate or escalating methotrexate. There were no differences in attention or executive functioning scores between the two treatment groups (cited Hardy et al. as reference 42).
Treatment of Relapsed Childhood ALL
Added text about the results of the phase II open-label DELPHINUS study, in which daratumumab was added to induction backbone chemotherapy to treat patients with relapsed or refractory T-ALL (cited Bhatla et al. as reference 54).
Added Prevention of relapse or failure after CD19-targeted CAR T-cell therapy as a new subsection.
This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood acute lymphoblastic leukemia. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Childhood Acute Lymphoblastic Leukemia Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Acute Lymphoblastic Leukemia Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/leukemia/hp/child-all-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389206]
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.
Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.
More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.