Salivary gland tumors are rare and account for 0.5% of all malignancies in children and adolescents. After rhabdomyosarcoma, they are the most common tumor in the head and neck.[1,2] Salivary gland tumors may occur after radiation therapy and chemotherapy are given for the treatment of primary leukemia or solid tumors.[3,4]
Most salivary gland neoplasms arise in the parotid gland.[5-10] About 15% of these tumors arise in the submandibular glands or in the minor salivary glands under the tongue and jaw.[8] These tumors are most frequently benign but may be malignant, especially in young children.[11] In a systematic review of pediatric salivary gland tumors, the median age of patients was 13.3 years, and most tumors occurred in the second decade of life. There is a slight female predominance.[12]
The most common malignant salivary gland tumor in children is mucoepidermoid carcinoma, followed by acinic cell carcinoma and adenoid cystic carcinoma. Less common malignancies include rhabdomyosarcoma, adenocarcinoma, and undifferentiated carcinoma.[1,8,10,13-15] Mucoepidermoid carcinoma is usually low or intermediate grade, although high-grade tumors do occur. Recurrent CRTC1::MAML2 fusion genes have been detected in pediatric mucoepidermoid carcinomas, reflecting the common chromosome translocation t(11;19)(q21;p13) that is also seen in adults with salivary gland tumors.[16] In one study, 12 of 12 tumors were positive for CRTC1::MAML2 fusion transcripts.[17]
Mammary analogue secretory carcinoma (MASC) of the salivary gland, also called salivary gland secretory carcinoma,[18] is a newly described pathological entity that has been seen in children.[19][Level of evidence C1] In one review, it was estimated that 12% of MASC cases occurred in the pediatric population.[20,21] MASC (salivary gland secretory carcinoma) is characterized by an ETV6::NTRK3 fusion gene.[22]
Metachronous mucoepidermoid carcinomas may occur in association with childhood leukemias and lymphomas.[23] One retrospective study compared 12 pediatric patients with metachronous mucoepidermoid carcinomas secondary to acute lymphoblastic leukemia (ALL) and 6 pediatric and young adult patients with primary mucoepidermoid carcinomas. KMT2A rearrangements were detected in pediatric metachronous mucoepidermoid carcinomas, and KMT2A rearrangements were detected in the leukemia that preceded the mucoepidermoid carcinoma in 7 of the 12 patients. The prognosis of patients with concomitant metachronous mucoepidermoid carcinomas and ALL was worse than the prognosis of patients with primary mucoepidermoid carcinomas.
The 5-year overall survival (OS) rate for pediatric patients with salivary gland tumors is approximately 95%.[24] A review of the Surveillance, Epidemiology, and End Results (SEER) Program database identified 284 patients younger than 20 years with tumors of the parotid gland.[25][Level of evidence C1] The OS rate was 96% at 5 years, 95% at 10 years, and 83% at 20 years. Adolescents had higher mortality rates (7.1%) than children younger than 15 years (1.6%; P = .23).
In an international systematic review of primary pediatric salivary gland tumors, there were 2,215 patients with malignant tumors between the ages of 0.3 and 19 years (mean age, 13.3 years). The 5-year OS rate was 93.1%, and the local recurrence rate was 18.1% in patients with malignant neoplasms.[12]
A retrospective multi-institutional survey identified 103 patients younger than 18 years with parotid gland cancer. Mucoepidermoid carcinoma was the most common histology (71 patients).[26][Level of evidence C1] The authors did not report if patients underwent previous therapies. However, they mentioned that 12 of 103 patients had a history of lymphoma. The 10-year relapse-free survival (RFS) rate for the entire group was 91%. Presence of intraparotid lymph node metastasis (LNM) was associated with significantly worse event-free survival and OS, as was history of previous therapy for lymphoma. The 10-year RFS rate was 91% for patients without intraparotid LNM and 37% for patients with intraparotid LNM.
Mucoepidermoid carcinoma is the most common type of treatment-related salivary gland tumor. With standard therapy, the 5-year survival rate is about 95% for patients with this tumor.[15,27,28]
A retrospective review identified 57 pediatric patients (aged <18 years) (4.6%) and 1,192 adult patients (95.4%) with acinic cell carcinoma.[29] Clinical LNMs were rare in children (n < 10) and adults (n = 88; 7.4%). Occult LNMs were uncommon in pediatric patients (n < 5) and adult patients (n = 41; 4.6%). The 3-year OS rate was 97.8% for pediatric patients. Adult patients with LNMs had worse 3-year OS rates than those without LNMs (66.0% vs. 96.3%; P < .001).
A retrospective study used the National Cancer Database to identify 72 patients between the ages of 0 and 21 years with adenoid cystic carcinoma of parotid and submandibular glands. The median age was 18 years, and 72.2% of patients were between the ages of 16 and 21 years. All patients had primary surgery. Most of the patients underwent lymph node dissection, and 70.8% of patients received radiation therapy. The 5-year OS rate was 93.2%, and the 10-year OS rate was 85.0%.[30]
The European Cooperative Study Group for Pediatric Rare Tumors within the PARTNER project (Paediatric Rare Tumours Network - European Registry) has published consensus guidelines for the diagnosis and treatment of childhood salivary gland tumors.[31]
Treatment options for childhood salivary gland tumors include the following:
Radical surgical removal is the treatment of choice for salivary gland tumors whenever possible, with additional use of radiation therapy for high-grade tumors or tumors that have invasive characteristics such as LNM, positive surgical margins, extracapsular extension, or perineural extension.[24,32,33]; [9][Level of evidence C1] Parotid gland tumors are removed with the aid of neurological monitoring to prevent damage to the facial nerve.
In an international systematic review of 2,215 pediatric patients with malignant salivary tumors, 28.9% received surgery and radiation therapy, 1.8% received surgery, radiation therapy, and chemotherapy, and 0.2% received radiation therapy alone.[12] One retrospective study compared proton therapy with conventional radiation therapy and found that proton therapy had a favorable acute toxicity and dosimetric profile.[34] Another retrospective study used brachytherapy with iodine I 125 seeds to treat 24 children with mucoepidermoid carcinoma who had high-risk factors. Seeds were implanted within 4 weeks of surgical resection. With a median follow-up of 7.2 years, the disease-free survival and OS rates were 100%. No severe radiation-associated complications were reported.[35][Level of evidence C2]
Objective responses have been observed in all reported patients with recurrent NTRK fusion–positive MASC who were treated with entrectinib or larotrectinib.[36,37] Ten of 11 adolescent or adult patients with TRK fusion–positive salivary gland tumors who were treated with larotrectinib experienced partial or complete responses.[37]
For more information, see Salivary Gland Cancer Treatment.
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.
Sialoblastoma is usually a benign tumor presenting in the neonatal period, but it has been reported to present as late as age 15 years. Sialoblastoma rarely metastasizes to the lungs, lymph nodes, or bones.[1]
The main treatment for patients with sialoblastoma is surgical resection. However, it has been suggested that neoadjuvant chemotherapy may be indicated as an alternative to mutilating surgery. Chemotherapy regimens with carboplatin, epirubicin, vincristine, etoposide, dactinomycin, doxorubicin, and ifosfamide have produced responses in two children with sialoblastoma.[2]; [3][Level of evidence C3]
Cancer in children and adolescents is rare, although the overall incidence has slowly increased since 1975.[1] Children and adolescents with cancer should be referred to medical centers that have a multidisciplinary team of cancer specialists with experience treating the cancers that occur during childhood and adolescence. This multidisciplinary team approach incorporates the skills of the following pediatric specialists and others to ensure that children receive treatment, supportive care, and rehabilitation to achieve optimal survival and quality of life:
For specific information about supportive care for children and adolescents with cancer, see the summaries on Supportive and Palliative Care.
The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[2] At these centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate is offered to most patients and their families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with current standard therapy. Other types of clinical trials test novel therapies when there is no standard therapy for a cancer diagnosis. Most of the progress in identifying curative therapies for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.
Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2020, childhood cancer mortality decreased by more than 50%.[3-5] Childhood and adolescent cancer survivors require close monitoring because side effects of cancer therapy may persist or develop months or years after treatment. For information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors, see Late Effects of Treatment for Childhood Cancer.
Childhood cancer is a rare disease, with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[6] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 people in the United States. Therefore, all pediatric cancers are considered rare.
The designation of a rare tumor is not uniform among pediatric and adult groups. In adults, rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people. They account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[7,8] In children and adolescents, the designation of a rare tumor is not uniform among international groups, as follows:
Most cancers in subgroup XI are either melanomas or thyroid cancers, with other cancer types accounting for only 2% of the cancers diagnosed in children aged 0 to 14 years and 9.3% of the cancers diagnosed in adolescents aged 15 to 19 years.
These rare cancers are extremely challenging to study because of the relatively few patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the small number of clinical trials for adolescents with rare cancers.
Information about these tumors may also be found in sources relevant to adults with cancer, such as Salivary Gland Cancer Treatment.
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
This summary was comprehensively reviewed.
This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood salivary gland tumors. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Childhood Salivary Gland Tumors Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Salivary Gland Tumors Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/head-and-neck/hp/child/salivary-gland-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 29337478]
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.
Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.
More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.