Pancreatic cancer

TRACO-November 18, 2024

Improving Treatments for Pancreatic Cancer

Christine Alewine, M.D., Ph.D. Clinical Translation Unit Laboratory of Molecular Biology NCI Center for Cancer Research

Cancer incidence and mortality

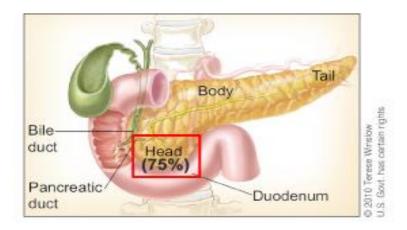
Pancreatic Cancer Incidence and Mortality

Estimated Deaths Siegel R et. al., CA Cancer J Clin, 2022								
			Males	Females				
Lung & bronchus	68,820	21%		Lung & bronchus 61,360 21%				
Prostate	34,500	11%		Breast 43,250 15%				
Colon & rectum	28,400	9%		Colon & rectum 24,180 8%				
Pancreas	25,970	8%		Pancreas 23,860 8%				
Liver & intrahepatic bile duct	20,420	6%		Ovary 12,810 4%				
Leukemia	14,020	4%		Uterine corpus 12,550 4%				
Esophagus	13,250	4%		Liver & intrahepatic bile duct 10,100 4%				
Urinary bladder	12,120	4%		Leukemia 9,980 3%				
Non-Hodgkin lymphoma	11,700	4%		Non-Hodgkin lymphoma 8,550 3%				
Brain & other nervous system	10,710	3%		Brain & other nervous system 7,570 3%				
All Sites	322,090	100%		All Sites 287,270 100%				

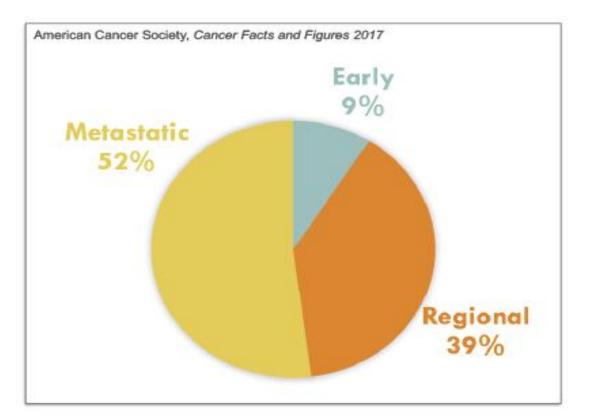
- 3rd leading cause of cancer death in the United States
- Median 5-year survival is 11.5%
- Estimated 62,210 new diagnoses and 49,830 deaths in 2022
- Incidence is increasing

Risk factors

Risk Factors


Ryan, Hong and Bardeesy, NEJM, 2014

Variable	Approximate Risk
Risk factor	
Smoking ³	2-3
 Long-standing diabetes mellitus* 	2
 Nonhereditary and chronic pancreatitis⁵ 	2–6
 Obesity, inactivity, or both⁶ 	2
Non-O blood group ⁷	1-2
Genetic syndrome and associated gene or genes — %	
Hereditary pancreatitis (PRSS1, SPINK1) ⁸	50
Familial atypical multiple mole and melanoma syndrome (p16) ⁹	10-20
Hereditary breast and ovarian cancer syndromes (BRCA1, BRCA2, PALB2) ^{10,11}	1-2
Peutz-Jeghers syndrome (STK11 [LKB1]) ¹²	30-40
Hereditary nonpolyposis colon cancer (Lynch syndrome) (MLH1, MSH2, MSH6) ¹³	4
Ataxia-telangiectasia (ATM)14	Unknown
Li-Fraumeni syndrome (P53)15	Unknown


* Values associated with risk factors are expressed as relative risks, and values associated with genetic syndromes are expressed as lifetime risks, as compared with the risk in the general population.

Pancreatic cancer types and stage

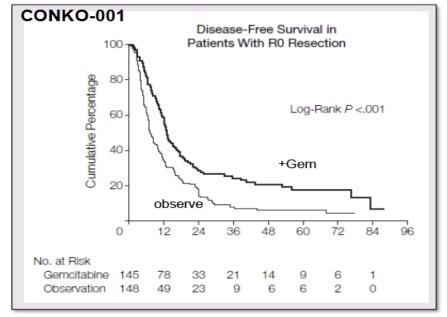
Pancreatic Cancer: Types and Stage at Diagnosis

- Adenocarcinoma (~90%)
- Neuroendocrine (<5%)
- Rare exocrine tumors

Prognosis and stage

Pancreas 100 All races 80 White 60 Black 42402 40 20 141415 111110 0 Localized Regional Distant All stages

Female breast Colorectum 99>99 100 90.92 9191 . 80 60 60 40 40 2930 20 20 151 Diatant Localized Regional All stages Diatant Regional All stage Prostate Lung & bronchus >99>99>99>99>99>99>99 989896100 100 80 80 60 60 40 40 333233 313030 20 20 0 Localized Regional Distant Al stages uncalized personal Distant of stages


Prognosis is better for patients with early-stage disease

American Cancer Society, Cancer Facts and Figures 2022

Pancreatic cancer treatment

All patients with "early-stage" disease recur even with a "perfect" surgery

- Perfect surgery alone is ineffective at curing PDAC
- All patients with PDAC have micrometastatic disease
- Must be combined with chemotherapy to kill micrometastatic disease

Oettle et al, JAMA, 2007

Chemotherapy regimens

Giving modern combination chemotherapy regimens following surgery increases the cure rate for early-stage PDAC

Conroy et al, NEJM, 2018

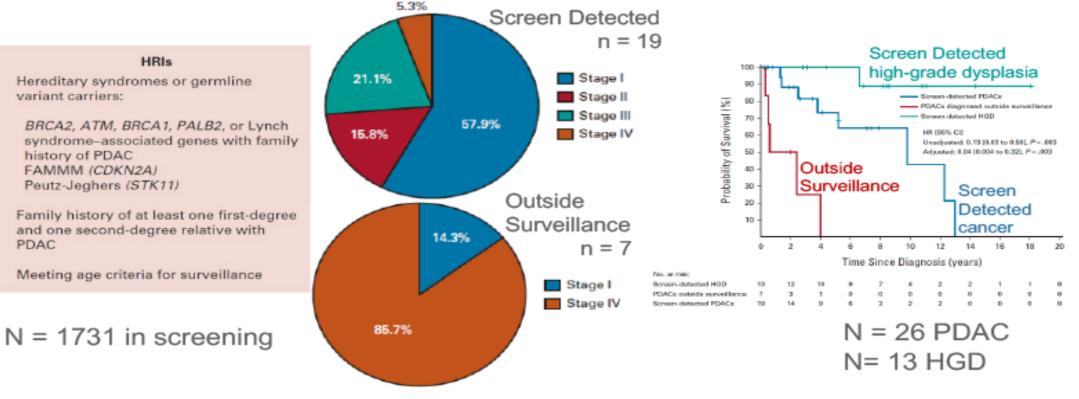
Lack of early detection

Why can't we detect pancreatic cancer earlier?

- Early symptoms are non-specific
- Current imaging methods rarely detect small lesions
- Difficulty in identifying specific biomarkers
 - Pancreatic Cancer is relatively rare (12.1/ 100,000 persons)
 - Test with 100% sensitivity and 99% specificity => 83 false positive for every real case
- Retroperitoneal positioning of the pancreas makes biopsy difficult
- Risk vs. benefit of removing suspicious pre-cursor lesions

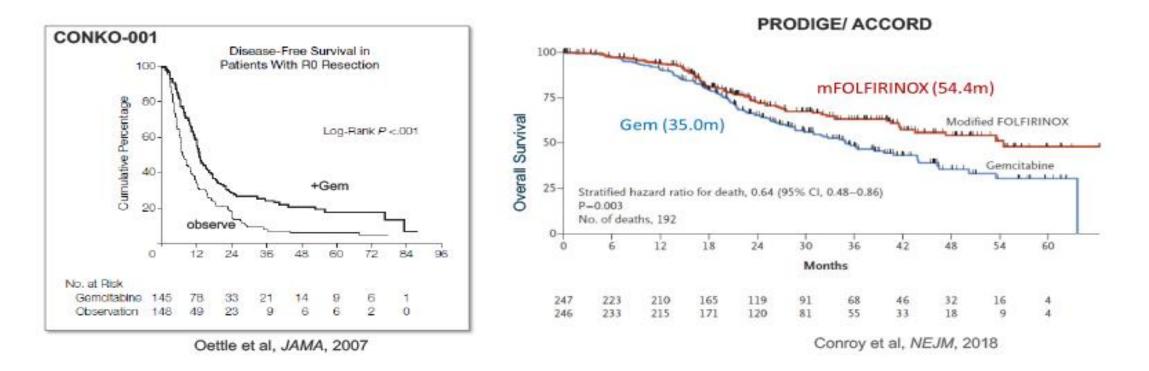
High-risk populations

Screening in High-Risk Populations


- Families with known genetic mutations that predispose to pancreatic cancer
- Persons with multiple close relatives who developed pancreatic cancer
- Over age 50 with newly diagnosed diabetes
- Chronic pancreatitis

Surveillance protocol

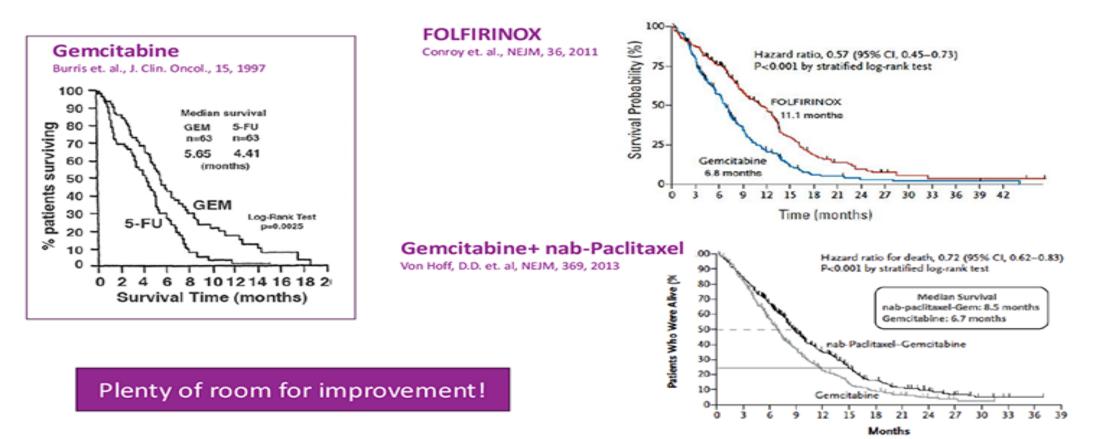
Annual surveillance with EUS and/or MRI/MRCP, often alternating between the two methods (surveillance interval was modified when concerning lesions were detected)


Familial disease

Progress in Screening Patients with Familial Disease- CAPS

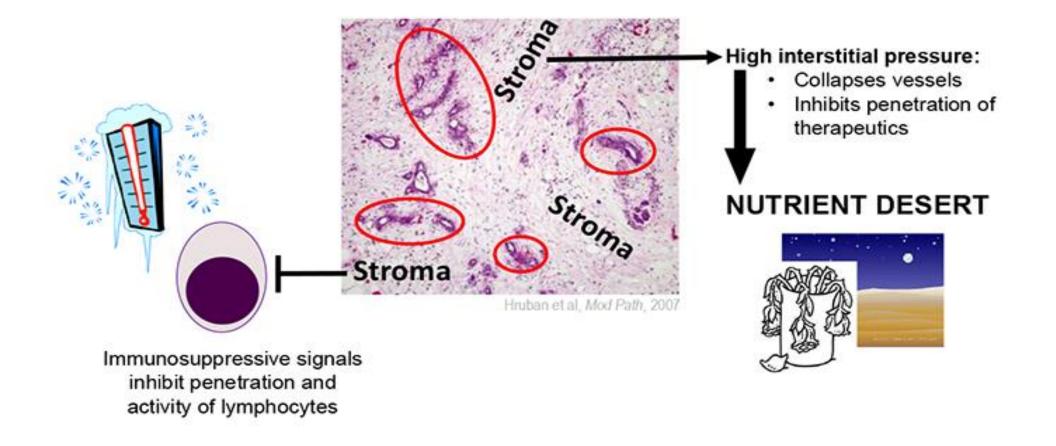
Surgery plus chemotherapy

Early Stage Disease: Surgery + Chemotherapy

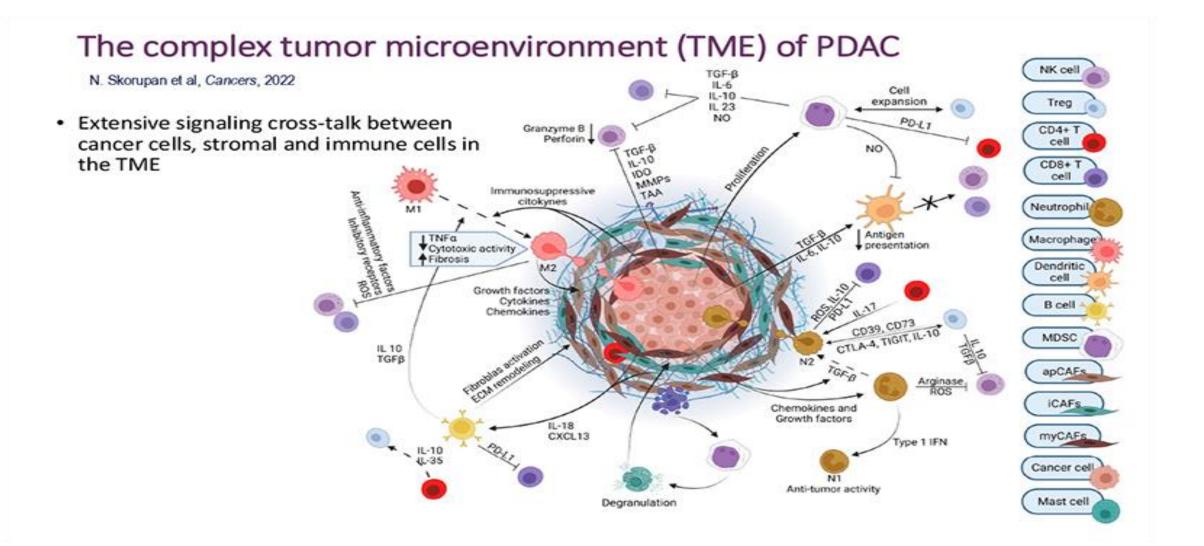

Neoadjuvant chemotherapy (chemo BEFORE surgery) is currently being tested in clinical trial and may provide additional survival advantage

PDAC treatment

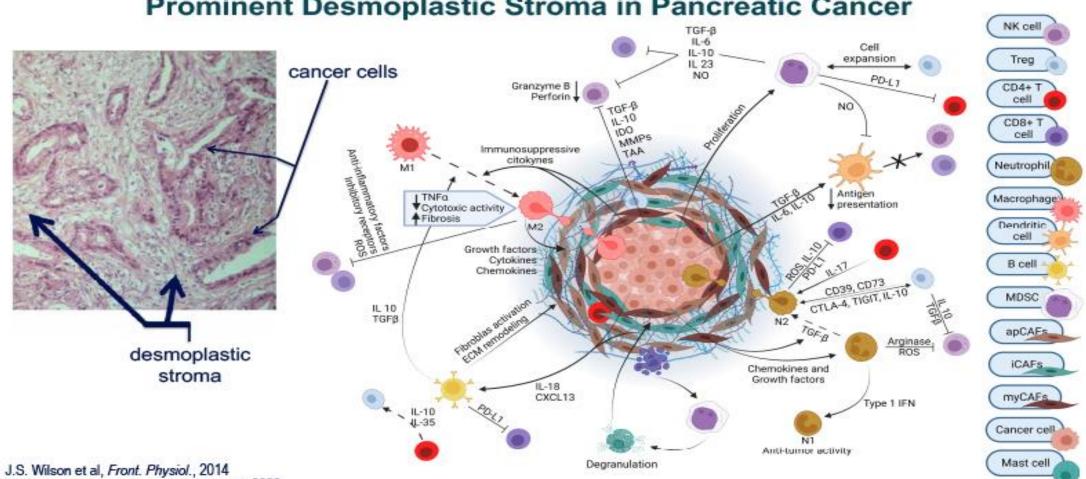
How do we treat advanced PDAC in the clinic?


Combination chemotherapy

Combination Chemo is the mainstay of pancreatic cancer treatment

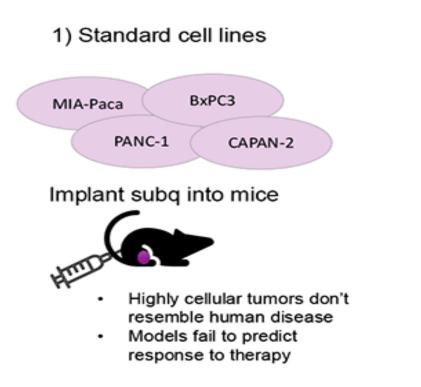


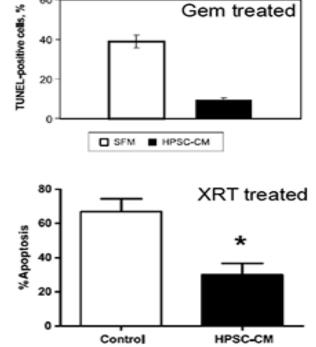
PDAC microenvironment


PDAC Tumor Microenvironment: "The wound that does not heal"

Tumor microenvironment

Stroma




Prominent Desmoplastic Stroma in Pancreatic Cancer

N. Skorupan et al (Alewine lab), Cancers, 2022

PDAC model

Difficult to model PDAC that resembles the human disease

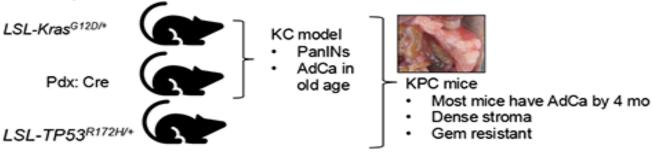
Factors secreted by Cancer Associated Fibroblasts (CAFs) help cancer cells survive treatment

Human disease models

Models that better resemble the human disease

Cannot evaluate contribution of the immune system

- 1) Patient-derived xenograft (PDX)
 - Predictive of patient response to treatment with cytotoxics and tumortargeted agents

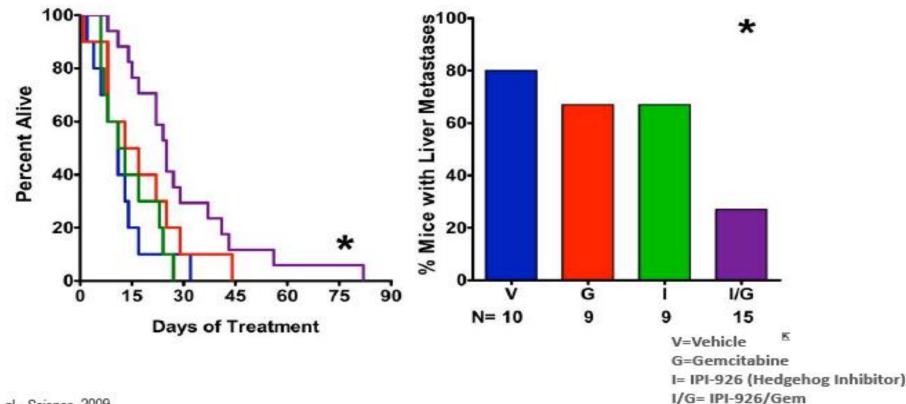

2) Organoids

- Predictive of patient response to treatment?
- Cannot be used to evaluate stromal modulators

Immune competent

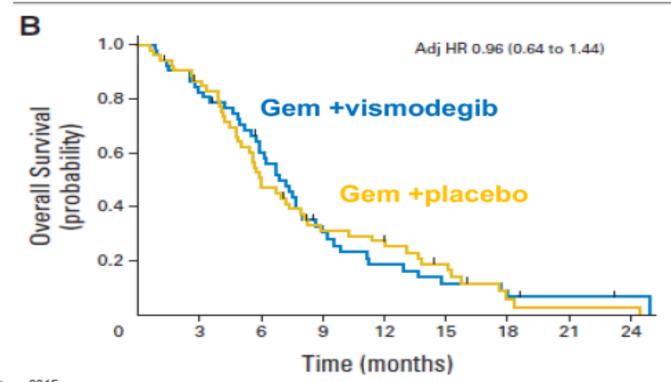
- 3) Tissue slice culture
 - Human
 - Transient, non-renewable
 - Intact immune/ stromal TME

4) KPC spontaneous autochthonous model

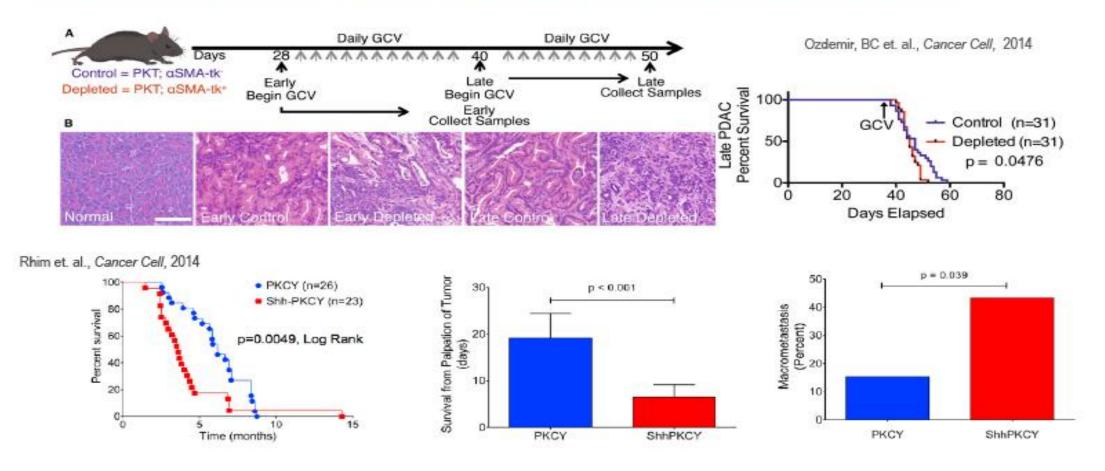


S Hingorani et al, Cancer Cell, 2005 Tiriac et al, Cancer Disc., 2018

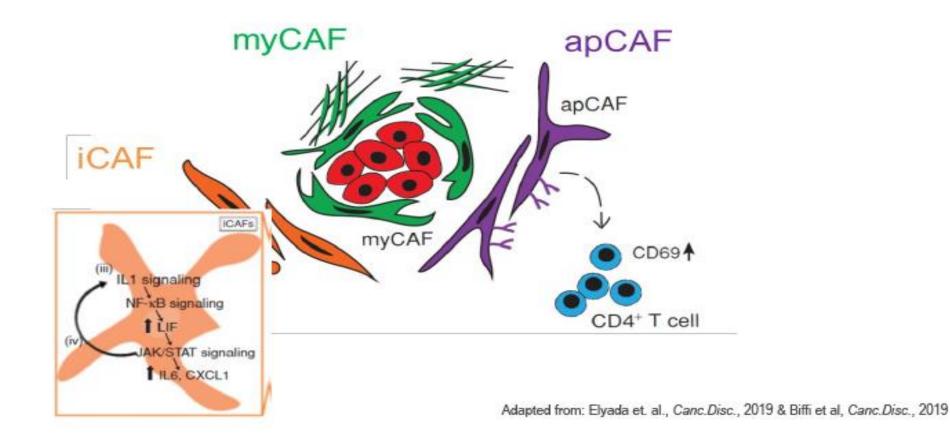
- Very resource intensive
- Can implant orthotopically into syngeneic mice


Hedgehog signaling

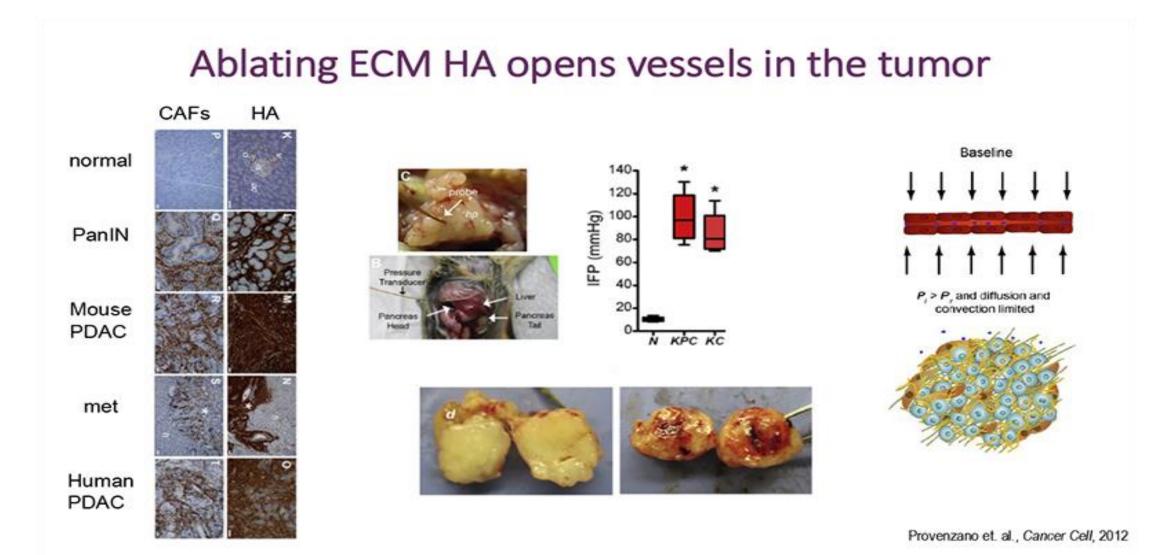
Inhibition of Hedgehog Signaling Depleted Stroma, Enhanced Drug Delivery and Improved Survival in Mice


SHH inhibitor

SHH inhibitor ineffective in clinic

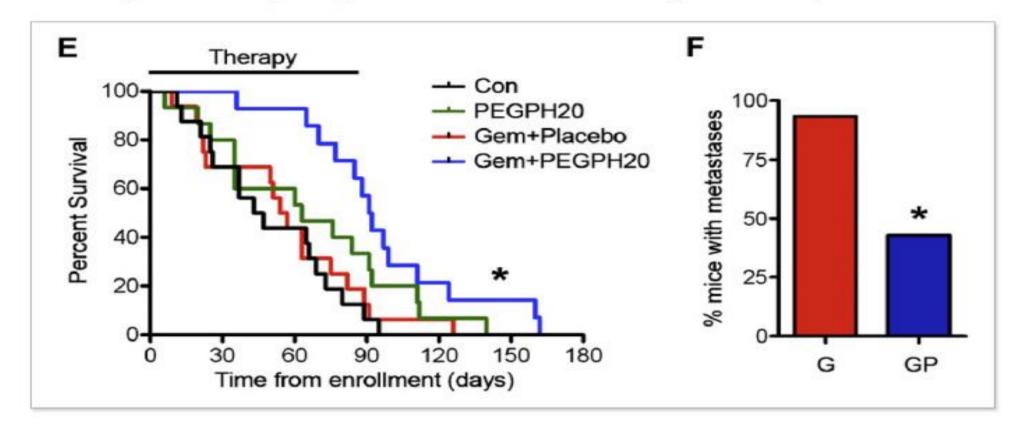

CAF destruction

Destruction of CAFs => more metastatic, poorly diffentiated tumors



CAF subtypes

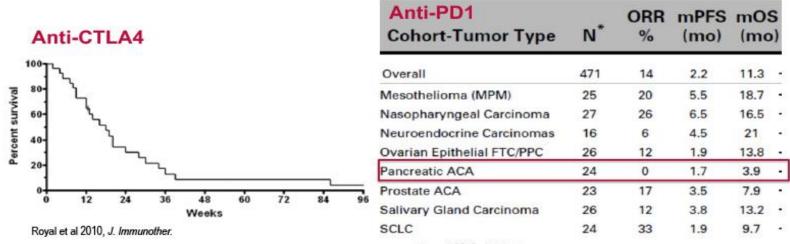
CAFs come in subtypes of varying function and origin



ECM ablation

Extracellular matrix

Enzymatic Targeting of ECM Enhances Therapeutic Response


Immunotherapy

Advent of immunotherapy in PDAC

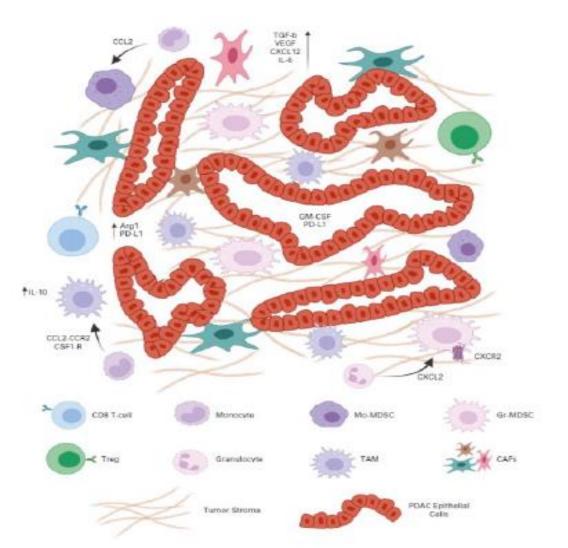
PDAC and immunotherapy

PDAC does not respond to single agent immunotherapy agents

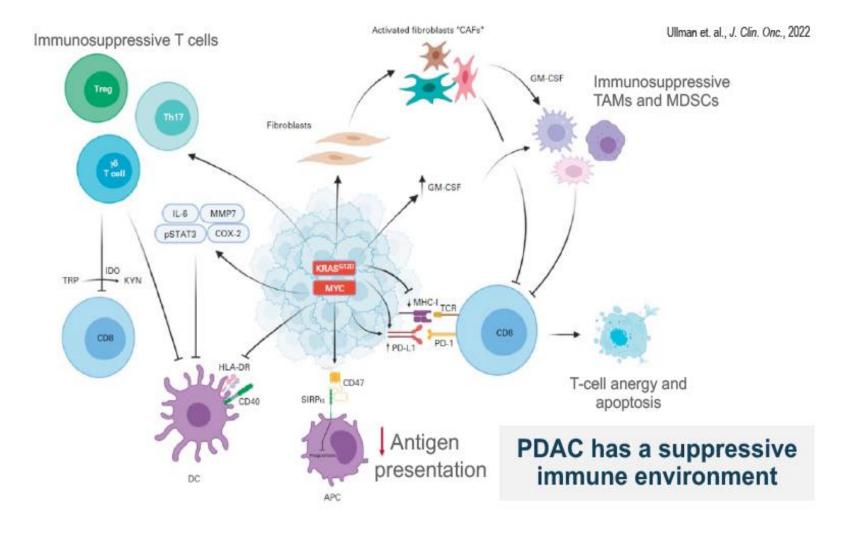
Ott et al 2019, J. Clin. Onc.

Immunotherapy combinations

Table 1. Selected completed clinical trials of immunotherapy in patients with pancreatic cancer⁸.


...or to combinations (so far)

Trial identifier number and study name	Phase	Population	N	Investigational treatment	Comparator treatment	Results	Reference
NCT02734160	1	mPDAC, s2 lines	32	$\label{eq:Galunisertib} \textit{(TGF}\beta\textit{i)} + \textit{Durvalumab}$	12	DCR 25%; mOS 5.72 months (95% CI, 4.0-8.4)	26
NCT0012580	2	LA and mPDAC	27	Ipilimumab		ORR 0% per RECIST, 1 delayed PR	23
NCT02558894	2	mPDAC, 2nd line	65	Arm A: Durvalumab + Tremelimumab	Arm B: Durvalumab	Arm A: ORR 3.1%; mOS 3.1 months (95% Cl, 2.2-6.1) Arm B: ORR 0%; mOS 3.6 months (95% Cl, 2.7-6.1)	25
NCT02879318 Canadian CTG PA 7 trial	2	mPDAC, 1st line	180	Arm A: Gem/NP + Durvalumab + Tremelimumab	Arm B: Gem/NP	Arm A: mOS 9.8 months Arm B: mOS 8.8 months HR = 0.94 (90% CI, 0.71-1.25; P = 0.72)	ClinicalTrials.gov ^a
NCT02077881	2	mPDAC, 1st line	135	Indoximod (IDO i) + Gem/NP	-	ORR 46.2%; mOS mOS 10.9 months	27
NCT03250273	2	mPDAC, 22nd line	30	Entinostat (HDACi) + Nivolumab	070	ORR 16.7%; mOS 3.9 months (95% Cl, 1.9-9.4)	Clinical Trials.gov ^a
NCT01417000	2	mPDAC, 21st line	90	Arm A: Cy/GVAX + CRS-207	Arm B: Cy/GVAX	Arm A: mOS 6.1 months Arm B: 3.9 months HR = 0.59 (95%Cl, 0.36-0.97; P = 0.02)	28
NCT02826486 COMBAT trial	2	mPDAC, 2nd line	43	Motixafortide (CXCR4 i) + Pembrolizumab + NAPOLI-1 chemo	(1 -1)	ORR 21.7%; DCR 63.2%; mOS 6.6 months (95% Cl, 4.5-8.7 months)	.33
NCT03214250 PRINCE	2	mPDAC, 1st line	93	Arm A: Gem/NP + Nivolumab Arm B: Gem/NP + Sotigalimab (aCD40 agonist) Arm C: Gem/NP + Sotigalimab + Nivo	Historical 1-y OS of 35% for Gem/NP	Arm A: 1-y OS 57%, P = 0.007 Arm B: 1-y OS 51%, P = 0.029 Arm C: 1-y OS 41%, P = 0.236	29
NCT01836432 PILLAR trial	3	BR or LA PDAC, necadjuvant	303	Arm A: Algenpantucel-L + SOC chemo + RT	Arm B: SOC chemo + RT	Arm A: mPFS 14.3 months Arm B: mPFS 14.9 months HR = 1.02 (95% Cl, 0.66-1.58; P = 0.98)	30
NCT02923921 SEQUOIA trial	3	mPDAC, 2nd line	567	Arm A: FOLFOX + Pegilodecakin (peg-rlL10)	Arm B: FOLFOX	Arm A: mOS 5.8 months Arm B: mOS 6.3 months HR = 1.05 (95% Cl, 0.86-1.27)	זנ
NCT02436668 RESOLVE trial	3	mPDAC, 1st line	424	Arm A: Gem/NP + Ibrutinib (BTK i)	Arm B: Gem/NP	Arm A: mOS 9.7 months Arm B: mOS 10.8 months HR = 1.1 (95% Cl, 0.9-1.3)	12


Cold tumor

Why is PDAC a "cold" tumor?

- Low tumor mutational burden (TMB)
- Effector T cell are rare within stroma close to cancer cells (few TIL)
- Nutrient poor, hypoxic and acidic TME hinders proliferation and function of TIL
- Decreased number and function of dendritic cells (DCs)
- Heavy infiltration of immune-suppressing myeloid cells

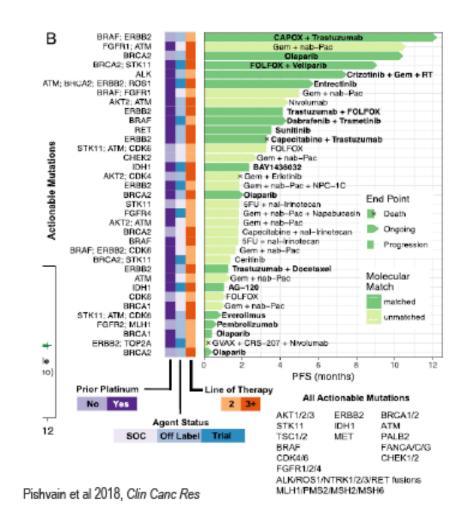
Immune suppression

Novel immunotherapies

Novel immunotherapies- an active area of investigation

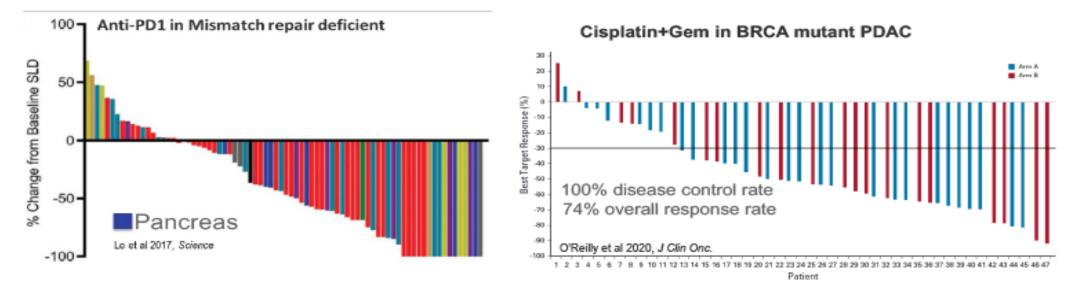
- Make "cold" tumor hot by combining with agents that stimulate immune response
 - Radio frequency ablation
 - Tumor vaccine
 - Oncolytic virus
- Block the macrophage "don't eat me" signal
- Novel engineered cell therapies
 - Including NK cells
- Combine with anti-cytokines and/or stromal modulating agents

Precision medicine


Precision medicine for Pancreatic Cancer

PDAC

Know Your Tumor: Precision Medicine for PDAC


- N = 640 patients accrued
- Adequate samples for sequencing in >90%
- "50% with actionable mutations (27% highly actionable)"
 - DNA repair genes (BRCA, ~8%)
 - Cell cycle genes (CCND1/2/3, CDK4/6, ~8%)
- · Effect of matched therapy
 - N = 18
 - PFS 4.1 vs. 1.9 m (HR 0.47, p = 0.03)

Waterfall plot

Precision Medicine Targets in PDAC

Profile	Give	Incidence
MSI	immunotherapy	<2%
BRCA mut	platinum chemo, olaparib maintenance	~5-12%
NTRK fusion	larotrectininb	<<1%
KRAS G12C	sotorasib?	1%

KRAS

KRAS: the no longer undruggable target

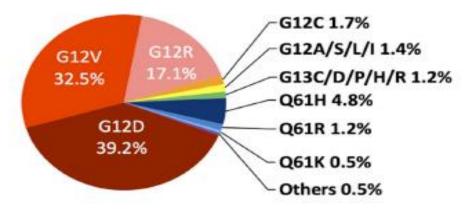
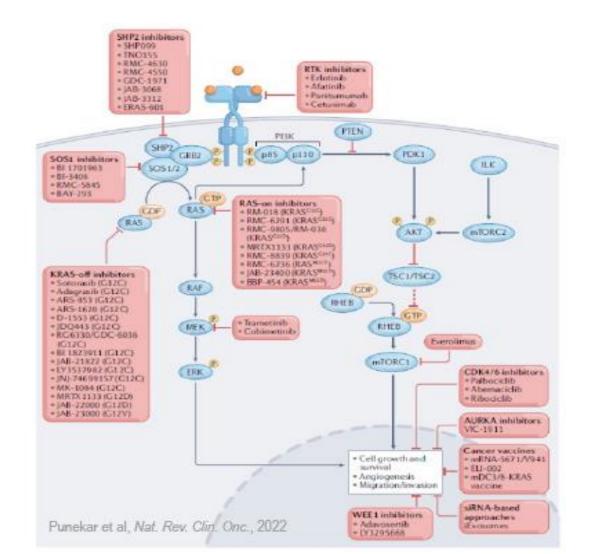



Fig. 3. Distribution of KRAS mutations in pancreatic cancer. The analysis was done using publicly available data from the cBioPortal database [48,49] that includes 665 KRAS mutant tumor samples from four large scale pancreatic cancer studies [50-53].

Luo et al, Seminars in Onc, 2021

KRASc12d inhibitor

The KRAS^{G12D} inhibitor MRTX1133 elucidates KRASmediated oncogenesis

Hallin et al 2022, Nat. Med.

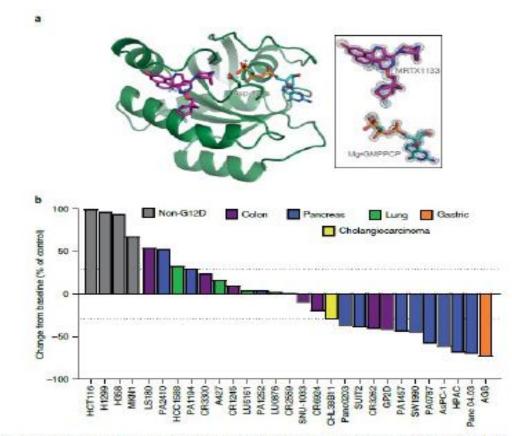


Fig. 1 |MRTX1133 potently inhibits both the active state and the inactive state of KRAS^{GLDD} and has anti-cancer activity in KRAS^{GLDD} bearing human tumor xenograft models. a, Crystal structure of KRAS^{GLDD} in complex with MRTX1133 and the GTP analog GMPPCP. b, Anti-tumor activity of MRTX1133 in various KRAS^{GLDD}-mutant and KRAS non-mutant xenograft models. Intraperitoneal injections of MRTX1133 were administered twice daily at a dose of 30 mg per kg body weight. The percentage change in tumor size from baseline was calculated at about day 14. © 2022, Hallin, J. et al.

SUMMARY

Summary

- Patients with pancreatic cancer have poor outcomes and few therapy choices
- Most pancreatic cancer is driven by mutation of KRAS oncogene
- Early detection remains an elusive goal for pancreatic cancer
- Screening programs are effective for those with known genetic risk
- PDAC has a unique TME that is paucicellular, stroma dense, immune-suppressive, poorly vascularized and hypoxic
- CAFs support to tumor cell growth and proliferation but also restrain metastasis
- Vigorous work to identify effective immune therapy for PDAC remains in progress
- New KRAS inhibitors likely to herald a new era in PDAC treatment

Questions?

